Skip to content

Files

Latest commit

fe17e16 · Nov 5, 2024

History

History

rank

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Mar 25, 2022
Mar 23, 2023
Nov 5, 2024
Feb 16, 2022
Jun 24, 2022
May 10, 2023
May 5, 2023
Jun 24, 2022
Jul 12, 2023
May 5, 2023
Aug 9, 2023
May 5, 2023
Mar 12, 2024
May 5, 2023
May 5, 2023
Aug 28, 2023
Oct 13, 2022
May 26, 2023
Jan 16, 2024
May 19, 2022
Apr 7, 2023
Jun 9, 2022
Mar 23, 2023
Apr 7, 2023
Jun 24, 2022
May 10, 2023
Dec 14, 2021
Jun 28, 2022
Sep 21, 2023
Jul 12, 2023
Sep 8, 2023
May 5, 2023
May 20, 2020
May 12, 2022

排序模型库

简介

我们提供了常见的排序任务中使用的模型算法的PaddleRec实现, 包括动态图和静态图的单机训练&预测效果指标。实现的排序模型包括 logistic regression多层神经网络FMgatenetDeepFMWide&Deepnaml

模型算法库在持续添加中,欢迎关注。

目录

整体介绍

模型列表

模型 简介 论文
DNN 多层神经网络 --
Logistic Regression 逻辑回归 --
FM 因子分解机 Factorization Machine(2010)
wide&deep Deep + wide(LR) Wide & Deep Learning for Recommender Systems(2016)
DeepFM DeepFM DeepFM: A Factorization-Machine based Neural Network for CTR Prediction(2017)
GateDnn 门机制在dnn网络中的应用 GateNet: Gating-Enhanced Deep Network for Click-Through Rate Prediction
naml naml Neural News Recommendation with Attentive Multi-View Learning
bst bst Behavior sequence transformer for e-commerce recommendation in alibaba
DCN DCN DeepAndCross: Deep & Cross Network for Ad Click Predictions
deepfefm deepfefm Field-Embedded Factorization Machines for Click-through rate prediction
dien dien Deep Interest Evolution Network for Click-Through Rate Prediction
din din Deep Interest Network for Click-Through Rate Prediction
dlrm dlrm Deep Learning Recommendation Model for Personalization and Recommendation Systems
dmr dmr Deep Match to Rank Model for Personalized Click-Through Rate Prediction
ffm ffm Field-aware factorization machines for CTR prediction
xdeepfm xdeepfm xdeepfm: Combining explicit and implicit feature interactions for recommender systems

下面是每个模型的简介(注:图片引用自链接中的论文)

wide&deep:

DeepFM:

使用教程

快速开始

# 进入模型目录
cd models/rank/xxx # xxx为任意的rank下的模型目录
# 动态图训练
python -u ../../../tools/trainer.py -m config.yaml # 全量数据运行config_bigdata.yaml 
# 动态图预测
python -u ../../../tools/infer.py -m config.yaml 

# 静态图训练
python -u ../../../tools/static_trainer.py -m config.yaml # 全量数据运行config_bigdata.yaml 
# 静态图预测
python -u ../../../tools/static_infer.py -m config.yaml 

模型效果

数据集 模型 loss auc acc
Criteo DNN -- 0.77 --
Criteo Logistic Regression -- 0.67 --
Criteo FM -- 0.78 --
Criteo GateDnn -- 0.79 --
MIND naml -- -- top1:0.43
Criteo DeepFM 0.44797 0.78 --
criteo Wide&Deep 0.76195 0.82 --
amazon BST -- 0.77 --
criteo dcn -- 0.77 --
criteo deepfefm -- 0.8028 --
amazonElec_Din dien -- 0.826 --
amazonElec_Din din -- 0.83 --
criteo DLRM -- 0.79 --
Ali_Display_Ad_Click dmr -- 0.6434 --
criteo ffm -- 0.79 --
criteo xDeepFM -- 0.79 --

效果复现

您需要进入PaddleRec/datasets目录下的对应数据集中运行脚本获取全量数据集,然后在模型目录下使用全量数据的参数运行。
每个模型下的readme中都有详细的效果复现的教程,您可以进入模型的目录中详细查看。