Skip to content

Latest commit

 

History

History
2077 lines (1324 loc) · 60.4 KB

domains.rst

File metadata and controls

2077 lines (1324 loc) · 60.4 KB

Domains

.. versionadded:: 1.0

Originally, Sphinx was conceived for a single project, the documentation of the Python language. Shortly afterwards, it was made available for everyone as a documentation tool, but the documentation of Python modules remained deeply built in -- the most fundamental directives, like function, were designed for Python objects. Since Sphinx has become somewhat popular, interest developed in using it for many different purposes: C/C++ projects, JavaScript, or even reStructuredText markup (like in this documentation).

While this was always possible, it is now much easier to easily support documentation of projects using different programming languages or even ones not supported by the main Sphinx distribution, by providing a domain for every such purpose.

A domain is a collection of markup (reStructuredText :term:`directive`s and :term:`role`s) to describe and link to :term:`object`s belonging together, e.g. elements of a programming language. Directive and role names in a domain have names like domain:name, e.g. py:function. Domains can also provide custom indices (like the Python Module Index).

Having domains means that there are no naming problems when one set of documentation wants to refer to e.g. C++ and Python classes. It also means that extensions that support the documentation of whole new languages are much easier to write.

This section describes what the domains that are included with Sphinx provide. The domain API is documented as well, in the section :ref:`domain-api`.

Basic Markup

Most domains provide a number of :dfn:`object description directives`, used to describe specific objects provided by modules. Each directive requires one or more signatures to provide basic information about what is being described, and the content should be the description. A domain will typically keep an internal index of all entities to aid cross-referencing. Typically it will also add entries in the shown general index. If you want to suppress the addition of an entry in the shown index, you can give the directive option flag :noindexentry:. If you want to typeset an object description, without even making it available for cross-referencing, you can give the directive option flag :noindex: (which implies :noindexentry:). Though, note that not every directive in every domain may support these options.

.. versionadded:: 3.2
   The directive option ``noindexentry`` in the Python, C, C++, and Javascript
   domains.

An example using a Python domain directive:

.. py:function:: spam(eggs)
                 ham(eggs)

   Spam or ham the foo.

This describes the two Python functions spam and ham. (Note that when signatures become too long, you can break them if you add a backslash to lines that are continued in the next line. Example:

.. py:function:: filterwarnings(action, message='', category=Warning, \
                                module='', lineno=0, append=False)
   :noindex:

(This example also shows how to use the :noindex: flag.)

The domains also provide roles that link back to these object descriptions. For example, to link to one of the functions described in the example above, you could say

The function :py:func:`spam` does a similar thing.

As you can see, both directive and role names contain the domain name and the directive name.

Default Domain

For documentation describing objects from solely one domain, authors will not have to state again its name at each directive, role, etc... after having specified a default. This can be done either via the config value :confval:`primary_domain` or via this directive:

.. rst:directive:: .. default-domain:: name

   Select a new default domain.  While the :confval:`primary_domain` selects a
   global default, this only has an effect within the same file.

If no other default is selected, the Python domain (named py) is the default one, mostly for compatibility with documentation written for older versions of Sphinx.

Directives and roles that belong to the default domain can be mentioned without giving the domain name, i.e.

.. function:: pyfunc()

   Describes a Python function.

Reference to :func:`pyfunc`.

Cross-referencing syntax

For cross-reference roles provided by domains, the same facilities exist as for general cross-references. See :ref:`xref-syntax`.

In short:

  • You may supply an explicit title and reference target: :role:`title <target>` will refer to target, but the link text will be title.
  • If you prefix the content with !, no reference/hyperlink will be created.
  • If you prefix the content with ~, the link text will only be the last component of the target. For example, :py:meth:`~Queue.Queue.get` will refer to Queue.Queue.get but only display get as the link text.

The Python Domain

The Python domain (name py) provides the following directives for module declarations:

.. rst:directive:: .. py:module:: name

   This directive marks the beginning of the description of a module (or package
   submodule, in which case the name should be fully qualified, including the
   package name).  A description of the module such as the docstring can be
   placed in the body of the directive.

   This directive will also cause an entry in the global module index.

   .. versionchanged:: 5.2

      Module directives support body content.

   .. rubric:: options

   .. rst:directive:option:: platform: platforms
      :type: comma separated list

      Indicate platforms which the module is available (if it is available on
      all platforms, the option should be omitted).  The keys are short
      identifiers; examples that are in use include "IRIX", "Mac", "Windows"
      and "Unix".  It is important to use a key which has already been used when
      applicable.

   .. rst:directive:option:: synopsis: purpose
      :type: text

      Consist of one sentence describing the module's purpose -- it is currently
      only used in the Global Module Index.

   .. rst:directive:option:: deprecated
      :type: no argument

      Mark a module as deprecated; it will be designated as such in various
      locations then.


.. rst:directive:: .. py:currentmodule:: name

   This directive tells Sphinx that the classes, functions etc. documented from
   here are in the given module (like :rst:dir:`py:module`), but it will not
   create index entries, an entry in the Global Module Index, or a link target
   for :rst:role:`py:mod`.  This is helpful in situations where documentation
   for things in a module is spread over multiple files or sections -- one
   location has the :rst:dir:`py:module` directive, the others only
   :rst:dir:`py:currentmodule`.

The following directives are provided for module and class contents:

.. rst:directive:: .. py:function:: name(parameters)

   Describes a module-level function.  The signature should include the
   parameters as given in the Python function definition, see :ref:`signatures`.
   For example::

      .. py:function:: Timer.repeat(repeat=3, number=1000000)

   For methods you should use :rst:dir:`py:method`.

   The description normally includes information about the parameters required
   and how they are used (especially whether mutable objects passed as
   parameters are modified), side effects, and possible exceptions.

   This information can (in any ``py`` directive) optionally be given in a
   structured form, see :ref:`info-field-lists`.

   .. rubric:: options

   .. rst:directive:option:: async
      :type: no value

      Indicate the function is an async function.

      .. versionadded:: 2.1

   .. rst:directive:option:: canonical
      :type: full qualified name including module name

      Describe the location where the object is defined if the object is
      imported from other modules

      .. versionadded:: 4.0

   .. rst::directive:option:: module
      :type: text

      Describe the location where the object is defined.  The default value is
      the module specified by :rst:dir:`py:currentmodule`.
.. rst:directive:: .. py:data:: name

   Describes global data in a module, including both variables and values used
   as "defined constants."  Class and object attributes are not documented
   using this environment.

   .. rubric:: options

   .. rst:directive:option:: type: type of the variable
      :type: text

      .. versionadded:: 2.4

   .. rst:directive:option:: value: initial value of the variable
      :type: text

      .. versionadded:: 2.4

   .. rst:directive:option:: canonical
      :type: full qualified name including module name

      Describe the location where the object is defined if the object is
      imported from other modules

      .. versionadded:: 4.0

   .. rst::directive:option:: module
      :type: text

      Describe the location where the object is defined.  The default value is
      the module specified by :rst:dir:`py:currentmodule`.
.. rst:directive:: .. py:exception:: name

   Describes an exception class.  The signature can, but need not include
   parentheses with constructor arguments.

   .. rubric:: options

   .. rst:directive:option:: final
      :type: no value

      Indicate the class is a final class.

      .. versionadded:: 3.1

   .. rst::directive:option:: module
      :type: text

      Describe the location where the object is defined.  The default value is
      the module specified by :rst:dir:`py:currentmodule`.
.. rst:directive:: .. py:class:: name
                   .. py:class:: name(parameters)

   Describes a class.  The signature can optionally include parentheses with
   parameters which will be shown as the constructor arguments.  See also
   :ref:`signatures`.

   Methods and attributes belonging to the class should be placed in this
   directive's body.  If they are placed outside, the supplied name should
   contain the class name so that cross-references still work.  Example::

      .. py:class:: Foo

         .. py:method:: quux()

      -- or --

      .. py:class:: Bar

      .. py:method:: Bar.quux()

   The first way is the preferred one.

   .. rubric:: options

   .. rst:directive:option:: canonical
      :type: full qualified name including module name

      Describe the location where the object is defined if the object is
      imported from other modules

      .. versionadded:: 4.0

   .. rst:directive:option:: final
      :type: no value

      Indicate the class is a final class.

      .. versionadded:: 3.1

   .. rst::directive:option:: module
      :type: text

      Describe the location where the object is defined.  The default value is
      the module specified by :rst:dir:`py:currentmodule`.
.. rst:directive:: .. py:attribute:: name

   Describes an object data attribute.  The description should include
   information about the type of the data to be expected and whether it may be
   changed directly.

   .. rubric:: options

   .. rst:directive:option:: type: type of the attribute
      :type: text

      .. versionadded:: 2.4

   .. rst:directive:option:: value: initial value of the attribute
      :type: text

      .. versionadded:: 2.4

   .. rst:directive:option:: canonical
      :type: full qualified name including module name

      Describe the location where the object is defined if the object is
      imported from other modules

      .. versionadded:: 4.0

   .. rst::directive:option:: module
      :type: text

      Describe the location where the object is defined.  The default value is
      the module specified by :rst:dir:`py:currentmodule`.
.. rst:directive:: .. py:property:: name

   Describes an object property.

   .. versionadded:: 4.0

   .. rubric:: options

   .. rst:directive:option:: abstractmethod
      :type: no value

      Indicate the property is abstract.

   .. rst:directive:option:: classmethod
      :type: no value

      Indicate the property is a classmethod.

      .. versionaddedd: 4.2

   .. rst:directive:option:: type: type of the property
      :type: text

   .. rst::directive:option:: module
      :type: text

      Describe the location where the object is defined.  The default value is
      the module specified by :rst:dir:`py:currentmodule`.
.. rst:directive:: .. py:method:: name(parameters)

   Describes an object method.  The parameters should not include the ``self``
   parameter.  The description should include similar information to that
   described for ``function``.  See also :ref:`signatures` and
   :ref:`info-field-lists`.

   .. rubric:: options

   .. rst:directive:option:: abstractmethod
      :type: no value

      Indicate the method is an abstract method.

      .. versionadded:: 2.1

   .. rst:directive:option:: async
      :type: no value

      Indicate the method is an async method.

      .. versionadded:: 2.1

   .. rst:directive:option:: canonical
      :type: full qualified name including module name

      Describe the location where the object is defined if the object is
      imported from other modules

      .. versionadded:: 4.0

   .. rst:directive:option:: classmethod
      :type: no value

      Indicate the method is a class method.

      .. versionadded:: 2.1

   .. rst:directive:option:: final
      :type: no value

      Indicate the class is a final method.

      .. versionadded:: 3.1

   .. rst::directive:option:: module
      :type: text

      Describe the location where the object is defined.  The default value is
      the module specified by :rst:dir:`py:currentmodule`.

   .. rst:directive:option:: property
      :type: no value

      Indicate the method is a property.

      .. versionadded:: 2.1

      .. deprecated:: 4.0

         Use :rst:dir:`py:property` instead.

   .. rst:directive:option:: staticmethod
      :type: no value

      Indicate the method is a static method.

      .. versionadded:: 2.1

.. rst:directive:: .. py:staticmethod:: name(parameters)

   Like :rst:dir:`py:method`, but indicates that the method is a static method.

   .. versionadded:: 0.4
.. rst:directive:: .. py:classmethod:: name(parameters)

   Like :rst:dir:`py:method`, but indicates that the method is a class method.

   .. versionadded:: 0.6
.. rst:directive:: .. py:decorator:: name
                   .. py:decorator:: name(parameters)

   Describes a decorator function.  The signature should represent the usage as
   a decorator.  For example, given the functions

   .. code-block:: python

      def removename(func):
          func.__name__ = ''
          return func

      def setnewname(name):
          def decorator(func):
              func.__name__ = name
              return func
          return decorator

   the descriptions should look like this::

      .. py:decorator:: removename

         Remove name of the decorated function.

      .. py:decorator:: setnewname(name)

         Set name of the decorated function to *name*.

   (as opposed to ``.. py:decorator:: removename(func)``.)

   There is no ``py:deco`` role to link to a decorator that is marked up with
   this directive; rather, use the :rst:role:`py:func` role.
.. rst:directive:: .. py:decoratormethod:: name
                   .. py:decoratormethod:: name(signature)

   Same as :rst:dir:`py:decorator`, but for decorators that are methods.

   Refer to a decorator method using the :rst:role:`py:meth` role.

Python Signatures

Signatures of functions, methods and class constructors can be given like they would be written in Python.

Default values for optional arguments can be given (but if they contain commas, they will confuse the signature parser). Python 3-style argument annotations can also be given as well as return type annotations:

.. py:function:: compile(source : string, filename, symbol='file') -> ast object

For functions with optional parameters that don't have default values (typically functions implemented in C extension modules without keyword argument support), you can use brackets to specify the optional parts:

.. py:function:: compile(source[, filename[, symbol]])
   :noindex:

It is customary to put the opening bracket before the comma.

Info field lists

.. versionadded:: 0.4
.. versionchanged:: 3.0

   meta fields are added.

Inside Python object description directives, reST field lists with these fields are recognized and formatted nicely:

  • param, parameter, arg, argument, key, keyword: Description of a parameter.
  • type: Type of a parameter. Creates a link if possible.
  • raises, raise, except, exception: That (and when) a specific exception is raised.
  • var, ivar, cvar: Description of a variable.
  • vartype: Type of a variable. Creates a link if possible.
  • returns, return: Description of the return value.
  • rtype: Return type. Creates a link if possible.
  • meta: Add metadata to description of the python object. The metadata will not be shown on output document. For example, :meta private: indicates the python object is private member. It is used in :py:mod:`sphinx.ext.autodoc` for filtering members.

Note

In current release, all var, ivar and cvar are represented as "Variable". There is no difference at all.

The field names must consist of one of these keywords and an argument (except for returns and rtype, which do not need an argument). This is best explained by an example:

.. py:function:: send_message(sender, recipient, message_body, [priority=1])

   Send a message to a recipient

   :param str sender: The person sending the message
   :param str recipient: The recipient of the message
   :param str message_body: The body of the message
   :param priority: The priority of the message, can be a number 1-5
   :type priority: integer or None
   :return: the message id
   :rtype: int
   :raises ValueError: if the message_body exceeds 160 characters
   :raises TypeError: if the message_body is not a basestring

This will render like this:

.. py:function:: send_message(sender, recipient, message_body, [priority=1])
   :noindex:

   Send a message to a recipient

   :param str sender: The person sending the message
   :param str recipient: The recipient of the message
   :param str message_body: The body of the message
   :param priority: The priority of the message, can be a number 1-5
   :type priority: integer or None
   :return: the message id
   :rtype: int
   :raises ValueError: if the message_body exceeds 160 characters
   :raises TypeError: if the message_body is not a basestring

It is also possible to combine parameter type and description, if the type is a single word, like this:

:param int priority: The priority of the message, can be a number 1-5
.. versionadded:: 1.5

Container types such as lists and dictionaries can be linked automatically using the following syntax:

:type priorities: list(int)
:type priorities: list[int]
:type mapping: dict(str, int)
:type mapping: dict[str, int]
:type point: tuple(float, float)
:type point: tuple[float, float]

Multiple types in a type field will be linked automatically if separated by the word "or":

:type an_arg: int or None
:vartype a_var: str or int
:rtype: float or str

Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is found:

.. rst:role:: py:mod

   Reference a module; a dotted name may be used.  This should also be used for
   package names.
.. rst:role:: py:func

   Reference a Python function; dotted names may be used.  The role text needs
   not include trailing parentheses to enhance readability; they will be added
   automatically by Sphinx if the :confval:`add_function_parentheses` config
   value is ``True`` (the default).
.. rst:role:: py:data

   Reference a module-level variable.
.. rst:role:: py:const

   Reference a "defined" constant.  This may be a Python variable that is not
   intended to be changed.
.. rst:role:: py:class

   Reference a class; a dotted name may be used.
.. rst:role:: py:meth

   Reference a method of an object.  The role text can include the type name
   and the method name; if it occurs within the description of a type, the type
   name can be omitted.  A dotted name may be used.
.. rst:role:: py:attr

   Reference a data attribute of an object.

   .. note:: The role is also able to refer to property.
.. rst:role:: py:exc

   Reference an exception.  A dotted name may be used.
.. rst:role:: py:obj

   Reference an object of unspecified type.  Useful e.g. as the
   :confval:`default_role`.

   .. versionadded:: 0.4

The name enclosed in this markup can include a module name and/or a class name. For example, :py:func:`filter` could refer to a function named filter in the current module, or the built-in function of that name. In contrast, :py:func:`foo.filter` clearly refers to the filter function in the foo module.

Normally, names in these roles are searched first without any further qualification, then with the current module name prepended, then with the current module and class name (if any) prepended. If you prefix the name with a dot, this order is reversed. For example, in the documentation of Python's :mod:`codecs` module, :py:func:`open` always refers to the built-in function, while :py:func:`.open` refers to :func:`codecs.open`.

A similar heuristic is used to determine whether the name is an attribute of the currently documented class.

Also, if the name is prefixed with a dot, and no exact match is found, the target is taken as a suffix and all object names with that suffix are searched. For example, :py:meth:`.TarFile.close` references the tarfile.TarFile.close() function, even if the current module is not tarfile. Since this can get ambiguous, if there is more than one possible match, you will get a warning from Sphinx.

Note that you can combine the ~ and . prefixes: :py:meth:`~.TarFile.close` will reference the tarfile.TarFile.close() method, but the visible link caption will only be close().

The C Domain

The C domain (name c) is suited for documentation of C API.

.. rst:directive:: .. c:member:: declaration
                   .. c:var:: declaration

   Describes a C struct member or variable. Example signature::

      .. c:member:: PyObject *PyTypeObject.tp_bases

   The difference between the two directives is only cosmetic.
.. rst:directive:: .. c:function:: function prototype

   Describes a C function. The signature should be given as in C, e.g.::

      .. c:function:: PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

   Note that you don't have to backslash-escape asterisks in the signature, as
   it is not parsed by the reST inliner.

   In the description of a function you can use the following info fields
   (see also :ref:`info-field-lists`).

   * ``param``, ``parameter``, ``arg``, ``argument``,
     Description of a parameter.
   * ``type``: Type of a parameter,
     written as if passed to the :rst:role:`c:expr` role.
   * ``returns``, ``return``: Description of the return value.
   * ``rtype``: Return type,
     written as if passed to the :rst:role:`c:expr` role.
   * ``retval``, ``retvals``: An alternative to ``returns`` for describing
     the result of the function.

   .. versionadded:: 4.3
      The ``retval`` field type.

   For example::

      .. c:function:: PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

         :param type: description of the first parameter.
         :param nitems: description of the second parameter.
         :returns: a result.
         :retval NULL: under some conditions.
         :retval NULL: under some other conditions as well.

   which renders as

   .. c:function:: PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

      ..
         ** for some editors (e.g., vim) to stop bold-highlighting the source

      :param type: description of the first parameter.
      :param nitems: description of the second parameter.
      :returns: a result.
      :retval NULL: under some conditions.
      :retval NULL: under some other conditions as well.

.. rst:directive:: .. c:macro:: name
                   .. c:macro:: name(arg list)

   Describes a C macro, i.e., a C-language ``#define``, without the replacement
   text.

   In the description of a macro you can use the same info fields as for the
   :rst:dir:`c:function` directive.

   .. versionadded:: 3.0
      The function style variant.
.. rst:directive:: .. c:struct:: name

   Describes a C struct.

   .. versionadded:: 3.0
.. rst:directive:: .. c:union:: name

   Describes a C union.

   .. versionadded:: 3.0
.. rst:directive:: .. c:enum:: name

   Describes a C enum.

   .. versionadded:: 3.0
.. rst:directive:: .. c:enumerator:: name

   Describes a C enumerator.

   .. versionadded:: 3.0
.. rst:directive:: .. c:type:: typedef-like declaration
                   .. c:type:: name

   Describes a C type, either as a typedef, or the alias for an unspecified
   type.

Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are defined in the documentation:

.. rst:role:: c:member
              c:data
              c:var
              c:func
              c:macro
              c:struct
              c:union
              c:enum
              c:enumerator
              c:type

   Reference a C declaration, as defined above.
   Note that :rst:role:`c:member`, :rst:role:`c:data`, and
   :rst:role:`c:var` are equivalent.

   .. versionadded:: 3.0
      The var, struct, union, enum, and enumerator roles.

Anonymous Entities

C supports anonymous structs, enums, and unions. For the sake of documentation they must be given some name that starts with @, e.g., @42 or @data. These names can also be used in cross-references, though nested symbols will be found even when omitted. The @... name will always be rendered as [anonymous] (possibly as a link).

Example:

.. c:struct:: Data

   .. c:union:: @data

      .. c:var:: int a

      .. c:var:: double b

Explicit ref: :c:var:`Data.@data.a`. Short-hand ref: :c:var:`Data.a`.

This will be rendered as:

.. c:struct:: Data
   :noindexentry:

   .. c:union:: @data
      :noindexentry:

      .. c:var:: int a
         :noindexentry:

      .. c:var:: double b
         :noindexentry:

Explicit ref: :c:var:`Data.@data.a`. Short-hand ref: :c:var:`Data.a`.

.. versionadded:: 3.0

Aliasing Declarations

.. c:namespace-push:: @alias

Sometimes it may be helpful list declarations elsewhere than their main documentation, e.g., when creating a synopsis of an interface. The following directive can be used for this purpose.

.. rst:directive:: .. c:alias:: name

   Insert one or more alias declarations. Each entity can be specified
   as they can in the :rst:role:`c:any` role.

   For example::

       .. c:var:: int data
       .. c:function:: int f(double k)

       .. c:alias:: data
                    f

   becomes

   .. c:var:: int data
   .. c:function:: int f(double k)

   .. c:alias:: data
                f

   .. versionadded:: 3.2


   .. rubric:: Options

   .. rst:directive:option:: maxdepth: int

      Insert nested declarations as well, up to the total depth given.
      Use 0 for infinite depth and 1 for just the mentioned declaration.
      Defaults to 1.

      .. versionadded:: 3.3

   .. rst:directive:option:: noroot

      Skip the mentioned declarations and only render nested declarations.
      Requires ``maxdepth`` either 0 or at least 2.

      .. versionadded:: 3.5

.. c:namespace-pop::

Inline Expressions and Types

.. rst:role:: c:expr
              c:texpr

   Insert a C expression or type either as inline code (``cpp:expr``)
   or inline text (``cpp:texpr``). For example::

      .. c:var:: int a = 42

      .. c:function:: int f(int i)

      An expression: :c:expr:`a * f(a)` (or as text: :c:texpr:`a * f(a)`).

      A type: :c:expr:`const Data*`
      (or as text :c:texpr:`const Data*`).

   will be rendered as follows:

   .. c:var:: int a = 42
      :noindexentry:

   .. c:function:: int f(int i)
      :noindexentry:

   An expression: :c:expr:`a * f(a)` (or as text: :c:texpr:`a * f(a)`).

   A type: :c:expr:`const Data*`
   (or as text :c:texpr:`const Data*`).

   .. versionadded:: 3.0

Namespacing

.. versionadded:: 3.1

The C language it self does not support namespacing, but it can sometimes be useful to emulate it in documentation, e.g., to show alternate declarations. The feature may also be used to document members of structs/unions/enums separate from their parent declaration.

The current scope can be changed using three namespace directives. They manage a stack declarations where c:namespace resets the stack and changes a given scope.

The c:namespace-push directive changes the scope to a given inner scope of the current one.

The c:namespace-pop directive undoes the most recent c:namespace-push directive.

.. rst:directive:: .. c:namespace:: scope specification

   Changes the current scope for the subsequent objects to the given scope, and
   resets the namespace directive stack. Note that nested scopes can be
   specified by separating with a dot, e.g.::

      .. c:namespace:: Namespace1.Namespace2.SomeStruct.AnInnerStruct

   All subsequent objects will be defined as if their name were declared with
   the scope prepended. The subsequent cross-references will be searched for
   starting in the current scope.

   Using ``NULL`` or ``0`` as the scope will change to global scope.
.. rst:directive:: .. c:namespace-push:: scope specification

   Change the scope relatively to the current scope. For example, after::

      .. c:namespace:: A.B

      .. c:namespace-push:: C.D

   the current scope will be ``A.B.C.D``.
.. rst:directive:: .. c:namespace-pop::

   Undo the previous ``c:namespace-push`` directive (*not* just pop a scope).
   For example, after::

      .. c:namespace:: A.B

      .. c:namespace-push:: C.D

      .. c:namespace-pop::

   the current scope will be ``A.B`` (*not* ``A.B.C``).

   If no previous ``c:namespace-push`` directive has been used, but only a
   ``c:namespace`` directive, then the current scope will be reset to global
   scope.  That is, ``.. c:namespace:: A.B`` is equivalent to::

      .. c:namespace:: NULL

      .. c:namespace-push:: A.B

Configuration Variables

See :ref:`c-config`.

The C++ Domain

The C++ domain (name cpp) supports documenting C++ projects.

Directives for Declaring Entities

The following directives are available. All declarations can start with a visibility statement (public, private or protected).

.. rst:directive:: .. cpp:class:: class specifier
                   .. cpp:struct:: class specifier

   Describe a class/struct, possibly with specification of inheritance, e.g.,::

      .. cpp:class:: MyClass : public MyBase, MyOtherBase

   The difference between :rst:dir:`cpp:class` and :rst:dir:`cpp:struct` is
   only cosmetic: the prefix rendered in the output, and the specifier shown
   in the index.

   The class can be directly declared inside a nested scope, e.g.,::

      .. cpp:class:: OuterScope::MyClass : public MyBase, MyOtherBase

   A class template can be declared::

      .. cpp:class:: template<typename T, std::size_t N> std::array

   or with a line break::

      .. cpp:class:: template<typename T, std::size_t N> \
                     std::array

   Full and partial template specialisations can be declared::

      .. cpp:class:: template<> \
                     std::array<bool, 256>

      .. cpp:class:: template<typename T> \
                     std::array<T, 42>

   .. versionadded:: 2.0
      The :rst:dir:`cpp:struct` directive.
.. rst:directive:: .. cpp:function:: (member) function prototype

   Describe a function or member function, e.g.,::

      .. cpp:function:: bool myMethod(int arg1, std::string arg2)

         A function with parameters and types.

      .. cpp:function:: bool myMethod(int, double)

         A function with unnamed parameters.

      .. cpp:function:: const T &MyClass::operator[](std::size_t i) const

         An overload for the indexing operator.

      .. cpp:function:: operator bool() const

         A casting operator.

      .. cpp:function:: constexpr void foo(std::string &bar[2]) noexcept

         A constexpr function.

      .. cpp:function:: MyClass::MyClass(const MyClass&) = default

         A copy constructor with default implementation.

   Function templates can also be described::

      .. cpp:function:: template<typename U> \
                        void print(U &&u)

   and function template specialisations::

      .. cpp:function:: template<> \
                        void print(int i)
.. rst:directive:: .. cpp:member:: (member) variable declaration
                   .. cpp:var:: (member) variable declaration

   Describe a variable or member variable, e.g.,::

      .. cpp:member:: std::string MyClass::myMember

      .. cpp:var:: std::string MyClass::myOtherMember[N][M]

      .. cpp:member:: int a = 42

   Variable templates can also be described::

      .. cpp:member:: template<class T> \
                      constexpr T pi = T(3.1415926535897932385)
.. rst:directive:: .. cpp:type:: typedef declaration
                   .. cpp:type:: name
                   .. cpp:type:: type alias declaration

   Describe a type as in a typedef declaration, a type alias declaration, or
   simply the name of a type with unspecified type, e.g.,::

      .. cpp:type:: std::vector<int> MyList

         A typedef-like declaration of a type.

      .. cpp:type:: MyContainer::const_iterator

         Declaration of a type alias with unspecified type.

      .. cpp:type:: MyType = std::unordered_map<int, std::string>

         Declaration of a type alias.

   A type alias can also be templated::

      .. cpp:type:: template<typename T> \
                    MyContainer = std::vector<T>

   The example are rendered as follows.

   .. cpp:type:: std::vector<int> MyList
      :noindex:

      A typedef-like declaration of a type.

   .. cpp:type:: MyContainer::const_iterator
      :noindex:

      Declaration of a type alias with unspecified type.

   .. cpp:type:: MyType = std::unordered_map<int, std::string>
      :noindex:

      Declaration of a type alias.

   .. cpp:type:: template<typename T> \
                 MyContainer = std::vector<T>
      :noindex:
.. rst:directive:: .. cpp:enum:: unscoped enum declaration
                   .. cpp:enum-struct:: scoped enum declaration
                   .. cpp:enum-class:: scoped enum declaration

   Describe a (scoped) enum, possibly with the underlying type specified.  Any
   enumerators declared inside an unscoped enum will be declared both in the
   enum scope and in the parent scope.  Examples::

      .. cpp:enum:: MyEnum

         An unscoped enum.

      .. cpp:enum:: MySpecificEnum : long

         An unscoped enum with specified underlying type.

      .. cpp:enum-class:: MyScopedEnum

         A scoped enum.

      .. cpp:enum-struct:: protected MyScopedVisibilityEnum : std::underlying_type<MySpecificEnum>::type

         A scoped enum with non-default visibility, and with a specified
         underlying type.
.. rst:directive:: .. cpp:enumerator:: name
                   .. cpp:enumerator:: name = constant

   Describe an enumerator, optionally with its value defined, e.g.,::

      .. cpp:enumerator:: MyEnum::myEnumerator

      .. cpp:enumerator:: MyEnum::myOtherEnumerator = 42
.. rst:directive:: .. cpp:union:: name

   Describe a union.

   .. versionadded:: 1.8
.. rst:directive:: .. cpp:concept:: template-parameter-list name

   .. warning:: The support for concepts is experimental. It is based on the
      current draft standard and the Concepts Technical Specification.
      The features may change as they evolve.

   Describe a concept. It must have exactly 1 template parameter list. The name
   may be a nested name. Example::

      .. cpp:concept:: template<typename It> std::Iterator

         Proxy to an element of a notional sequence that can be compared,
         indirected, or incremented.

         **Notation**

         .. cpp:var:: It r

            An lvalue.

         **Valid Expressions**

         - :cpp:expr:`*r`, when :cpp:expr:`r` is dereferenceable.
         - :cpp:expr:`++r`, with return type :cpp:expr:`It&`, when
           :cpp:expr:`r` is incrementable.

   This will render as follows:

   .. cpp:concept:: template<typename It> std::Iterator

      Proxy to an element of a notional sequence that can be compared,
      indirected, or incremented.

      **Notation**

      .. cpp:var:: It r

         An lvalue.

      **Valid Expressions**

      - :cpp:expr:`*r`, when :cpp:expr:`r` is dereferenceable.
      - :cpp:expr:`++r`, with return type :cpp:expr:`It&`, when :cpp:expr:`r`
        is incrementable.

   .. versionadded:: 1.5

Options

Some directives support options:

  • :noindexentry:, see :ref:`basic-domain-markup`.

  • :tparam-line-spec:, for templated declarations. If specified, each template parameter will be rendered on a separate line.

    .. versionadded:: 1.6
    

Anonymous Entities

C++ supports anonymous namespaces, classes, enums, and unions. For the sake of documentation they must be given some name that starts with @, e.g., @42 or @data. These names can also be used in cross-references and (type) expressions, though nested symbols will be found even when omitted. The @... name will always be rendered as [anonymous] (possibly as a link).

Example:

.. cpp:class:: Data

   .. cpp:union:: @data

      .. cpp:var:: int a

      .. cpp:var:: double b

Explicit ref: :cpp:var:`Data::@data::a`. Short-hand ref: :cpp:var:`Data::a`.

This will be rendered as:

.. cpp:class:: Data
   :noindexentry:

   .. cpp:union:: @data
      :noindexentry:

      .. cpp:var:: int a
         :noindexentry:

      .. cpp:var:: double b
         :noindexentry:

Explicit ref: :cpp:var:`Data::@data::a`. Short-hand ref: :cpp:var:`Data::a`.

.. versionadded:: 1.8

Aliasing Declarations

Sometimes it may be helpful list declarations elsewhere than their main documentation, e.g., when creating a synopsis of a class interface. The following directive can be used for this purpose.

.. rst:directive:: .. cpp:alias:: name or function signature

   Insert one or more alias declarations. Each entity can be specified
   as they can in the :rst:role:`cpp:any` role.
   If the name of a function is given (as opposed to the complete signature),
   then all overloads of the function will be listed.

   For example::

       .. cpp:alias:: Data::a
                      overload_example::C::f

   becomes

   .. cpp:alias:: Data::a
                  overload_example::C::f

   whereas::

       .. cpp:alias:: void overload_example::C::f(double d) const
                      void overload_example::C::f(double d)

   becomes

   .. cpp:alias:: void overload_example::C::f(double d) const
                  void overload_example::C::f(double d)

   .. versionadded:: 2.0


   .. rubric:: Options

   .. rst:directive:option:: maxdepth: int

      Insert nested declarations as well, up to the total depth given.
      Use 0 for infinite depth and 1 for just the mentioned declaration.
      Defaults to 1.

      .. versionadded:: 3.5

   .. rst:directive:option:: noroot

      Skip the mentioned declarations and only render nested declarations.
      Requires ``maxdepth`` either 0 or at least 2.

      .. versionadded:: 3.5

Constrained Templates

Warning

The support for concepts is experimental. It is based on the current draft standard and the Concepts Technical Specification. The features may change as they evolve.

Note

Sphinx does not currently support requires clauses.

Placeholders

Declarations may use the name of a concept to introduce constrained template parameters, or the keyword auto to introduce unconstrained template parameters:

.. cpp:function:: void f(auto &&arg)

   A function template with a single unconstrained template parameter.

.. cpp:function:: void f(std::Iterator it)

   A function template with a single template parameter, constrained by the
   Iterator concept.

Template Introductions

Simple constrained function or class templates can be declared with a template introduction instead of a template parameter list:

.. cpp:function:: std::Iterator{It} void advance(It &it)

    A function template with a template parameter constrained to be an
    Iterator.

.. cpp:class:: std::LessThanComparable{T} MySortedContainer

    A class template with a template parameter constrained to be
    LessThanComparable.

They are rendered as follows.

.. cpp:function:: std::Iterator{It} void advance(It &it)
   :noindexentry:

   A function template with a template parameter constrained to be an Iterator.
.. cpp:class:: std::LessThanComparable{T} MySortedContainer
   :noindexentry:

   A class template with a template parameter constrained to be
   LessThanComparable.

Note however that no checking is performed with respect to parameter compatibility. E.g., Iterator{A, B, C} will be accepted as an introduction even though it would not be valid C++.

Inline Expressions and Types

.. rst:role:: cpp:expr
              cpp:texpr

   Insert a C++ expression or type either as inline code (``cpp:expr``)
   or inline text (``cpp:texpr``). For example::

      .. cpp:var:: int a = 42

      .. cpp:function:: int f(int i)

      An expression: :cpp:expr:`a * f(a)` (or as text: :cpp:texpr:`a * f(a)`).

      A type: :cpp:expr:`const MySortedContainer<int>&`
      (or as text :cpp:texpr:`const MySortedContainer<int>&`).

   will be rendered as follows:

   .. cpp:var:: int a = 42
      :noindexentry:

   .. cpp:function:: int f(int i)
      :noindexentry:

   An expression: :cpp:expr:`a * f(a)` (or as text: :cpp:texpr:`a * f(a)`).

   A type: :cpp:expr:`const MySortedContainer<int>&`
   (or as text :cpp:texpr:`const MySortedContainer<int>&`).

   .. versionadded:: 1.7
      The :rst:role:`cpp:expr` role.

   .. versionadded:: 1.8
      The :rst:role:`cpp:texpr` role.

Namespacing

Declarations in the C++ domain are as default placed in global scope. The current scope can be changed using three namespace directives. They manage a stack declarations where cpp:namespace resets the stack and changes a given scope.

The cpp:namespace-push directive changes the scope to a given inner scope of the current one.

The cpp:namespace-pop directive undoes the most recent cpp:namespace-push directive.

.. rst:directive:: .. cpp:namespace:: scope specification

   Changes the current scope for the subsequent objects to the given scope, and
   resets the namespace directive stack.  Note that the namespace does not need
   to correspond to C++ namespaces, but can end in names of classes, e.g.,::

      .. cpp:namespace:: Namespace1::Namespace2::SomeClass::AnInnerClass

   All subsequent objects will be defined as if their name were declared with
   the scope prepended. The subsequent cross-references will be searched for
   starting in the current scope.

   Using ``NULL``, ``0``, or ``nullptr`` as the scope will change to global
   scope.

   A namespace declaration can also be templated, e.g.,::

      .. cpp:class:: template<typename T> \
                     std::vector

      .. cpp:namespace:: template<typename T> std::vector

      .. cpp:function:: std::size_t size() const

   declares ``size`` as a member function of the class template
   ``std::vector``.  Equivalently this could have been declared using::

      .. cpp:class:: template<typename T> \
                     std::vector

         .. cpp:function:: std::size_t size() const

   or::

      .. cpp:class:: template<typename T> \
                     std::vector
.. rst:directive:: .. cpp:namespace-push:: scope specification

   Change the scope relatively to the current scope. For example, after::

      .. cpp:namespace:: A::B

      .. cpp:namespace-push:: C::D

   the current scope will be ``A::B::C::D``.

   .. versionadded:: 1.4
.. rst:directive:: .. cpp:namespace-pop::

   Undo the previous ``cpp:namespace-push`` directive (*not* just pop a scope).
   For example, after::

      .. cpp:namespace:: A::B

      .. cpp:namespace-push:: C::D

      .. cpp:namespace-pop::

   the current scope will be ``A::B`` (*not* ``A::B::C``).

   If no previous ``cpp:namespace-push`` directive has been used, but only a
   ``cpp:namespace`` directive, then the current scope will be reset to global
   scope.  That is, ``.. cpp:namespace:: A::B`` is equivalent to::

      .. cpp:namespace:: nullptr

      .. cpp:namespace-push:: A::B

   .. versionadded:: 1.4

Info field lists

All the C++ directives for declaring entities support the following info fields (see also :ref:`info-field-lists`):

  • tparam: Description of a template parameter.

The :rst:dir:`cpp:function` directive additionally supports the following fields:

  • param, parameter, arg, argument: Description of a parameter.
  • returns, return: Description of a return value.
  • retval, retvals: An alternative to returns for describing the result of the function.
  • throws, throw, exception: Description of a possibly thrown exception.
.. versionadded:: 4.3
   The ``retval`` field type.

Cross-referencing

These roles link to the given declaration types:

.. rst:role:: cpp:any
              cpp:class
              cpp:struct
              cpp:func
              cpp:member
              cpp:var
              cpp:type
              cpp:concept
              cpp:enum
              cpp:enumerator

   Reference a C++ declaration by name (see below for details).  The name must
   be properly qualified relative to the position of the link.

   .. versionadded:: 2.0
      The :rst:role:`cpp:struct` role as alias for the :rst:role:`cpp:class`
      role.

Note on References with Templates Parameters/Arguments

These roles follow the Sphinx :ref:`xref-syntax` rules. This means care must be taken when referencing a (partial) template specialization, e.g. if the link looks like this: :cpp:class:`MyClass<int>`. This is interpreted as a link to int with a title of MyClass. In this case, escape the opening angle bracket with a backslash, like this: :cpp:class:`MyClass\<int>`.

When a custom title is not needed it may be useful to use the roles for inline expressions, :rst:role:`cpp:expr` and :rst:role:`cpp:texpr`, where angle brackets do not need escaping.

Declarations without template parameters and template arguments

For linking to non-templated declarations the name must be a nested name, e.g., f or MyClass::f.

Overloaded (member) functions

When a (member) function is referenced using just its name, the reference will point to an arbitrary matching overload. The :rst:role:`cpp:any` and :rst:role:`cpp:func` roles use an alternative format, which simply is a complete function declaration. This will resolve to the exact matching overload. As example, consider the following class declaration:

.. cpp:namespace-push:: overload_example
.. cpp:class:: C

   .. cpp:function:: void f(double d) const
   .. cpp:function:: void f(double d)
   .. cpp:function:: void f(int i)
   .. cpp:function:: void f()

References using the :rst:role:`cpp:func` role:

Note that the :confval:`add_function_parentheses` configuration variable does not influence specific overload references.

.. cpp:namespace-pop::

Templated declarations

Assume the following declarations.

.. cpp:class:: Wrapper

   .. cpp:class:: template<typename TOuter> \
                  Outer

      .. cpp:class:: template<typename TInner> \
                     Inner

In general the reference must include the template parameter declarations, and template arguments for the prefix of qualified names. For example:

Currently the lookup only succeed if the template parameter identifiers are equal strings. That is, template\<typename UOuter> Wrapper::Outer will not work.

As a shorthand notation, if a template parameter list is omitted, then the lookup will assume either a primary template or a non-template, but not a partial template specialisation. This means the following references work as well:

(Full) Template Specialisations

Assume the following declarations.

.. cpp:class:: template<typename TOuter> \
               Outer

  .. cpp:class:: template<typename TInner> \
                 Inner
.. cpp:class:: template<> \
               Outer<int>

  .. cpp:class:: template<typename TInner> \
                 Inner

  .. cpp:class:: template<> \
                 Inner<bool>

In general the reference must include a template parameter list for each template argument list. The full specialisation above can therefore be referenced with template\<> Outer\<int> (:cpp:class:`template\<> Outer\<int>`) and template\<> template\<> Outer\<int>::Inner\<bool> (:cpp:class:`template\<> template\<> Outer\<int>::Inner\<bool>`). As a shorthand the empty template parameter list can be omitted, e.g., Outer\<int> (:cpp:class:`Outer\<int>`) and Outer\<int>::Inner\<bool> (:cpp:class:`Outer\<int>::Inner\<bool>`).

Partial Template Specialisations

Assume the following declaration.

.. cpp:class:: template<typename T> \
               Outer<T*>

References to partial specialisations must always include the template parameter lists, e.g., template\<typename T> Outer\<T*> (:cpp:class:`template\<typename T> Outer\<T*>`). Currently the lookup only succeed if the template parameter identifiers are equal strings.

Configuration Variables

See :ref:`cpp-config`.

The Standard Domain

The so-called "standard" domain collects all markup that doesn't warrant a domain of its own. Its directives and roles are not prefixed with a domain name.

The standard domain is also where custom object descriptions, added using the :func:`~sphinx.application.Sphinx.add_object_type` API, are placed.

There is a set of directives allowing documenting command-line programs:

.. rst:directive:: .. option:: name args, name args, ...

   Describes a command line argument or switch.  Option argument names should
   be enclosed in angle brackets.  Examples::

      .. option:: dest_dir

         Destination directory.

      .. option:: -m <module>, --module <module>

         Run a module as a script.

   The directive will create cross-reference targets for the given options,
   referenceable by :rst:role:`option` (in the example case, you'd use something
   like ``:option:`dest_dir```, ``:option:`-m```, or ``:option:`--module```).

   .. versionchanged:: 5.3

      One can cross-reference including an option value: ``:option:`--module=foobar```,
      ,``:option:`--module[=foobar]``` or ``:option:`--module foobar```.

   Use :confval:`option_emphasise_placeholders` for parsing of
   "variable part" of a literal text (similarly to the :rst:role:`samp` role).

   ``cmdoption`` directive is a deprecated alias for the ``option`` directive.
.. rst:directive:: .. envvar:: name

   Describes an environment variable that the documented code or program uses
   or defines.  Referenceable by :rst:role:`envvar`.
.. rst:directive:: .. program:: name

   Like :rst:dir:`py:currentmodule`, this directive produces no output.
   Instead, it serves to notify Sphinx that all following :rst:dir:`option`
   directives document options for the program called *name*.

   If you use :rst:dir:`program`, you have to qualify the references in your
   :rst:role:`option` roles by the program name, so if you have the following
   situation ::

      .. program:: rm

      .. option:: -r

         Work recursively.

      .. program:: svn

      .. option:: -r <revision>

         Specify the revision to work upon.

   then ``:option:`rm -r``` would refer to the first option, while
   ``:option:`svn -r``` would refer to the second one.

   If ``None`` is passed to the argument, the directive will reset the
   current program name.

   The program name may contain spaces (in case you want to document
   subcommands like ``svn add`` and ``svn commit`` separately).

   .. versionadded:: 0.5

There is also a very generic object description directive, which is not tied to any domain:

.. rst:directive:: .. describe:: text
               .. object:: text

   This directive produces the same formatting as the specific ones provided by
   domains, but does not create index entries or cross-referencing targets.
   Example::

      .. describe:: PAPER

         You can set this variable to select a paper size.

The JavaScript Domain

The JavaScript domain (name js) provides the following directives:

.. rst:directive:: .. js:module:: name

   This directive sets the module name for object declarations that follow
   after. The module name is used in the global module index and in cross
   references. This directive does not create an object heading like
   :rst:dir:`py:class` would, for example.

   By default, this directive will create a linkable entity and will cause an
   entry in the global module index, unless the ``noindex`` option is
   specified.  If this option is specified, the directive will only update the
   current module name.

   .. versionadded:: 1.6
   .. versionchanged:: 5.2

      Module directives support body content.
.. rst:directive:: .. js:function:: name(signature)

   Describes a JavaScript function or method.  If you want to describe
   arguments as optional use square brackets as :ref:`documented <signatures>`
   for Python signatures.

   You can use fields to give more details about arguments and their expected
   types, errors which may be thrown by the function, and the value being
   returned::

      .. js:function:: $.getJSON(href, callback[, errback])

         :param string href: An URI to the location of the resource.
         :param callback: Gets called with the object.
         :param errback:
             Gets called in case the request fails. And a lot of other
             text so we need multiple lines.
         :throws SomeError: For whatever reason in that case.
         :returns: Something.

   This is rendered as:

   .. js:function:: $.getJSON(href, callback[, errback])
      :noindex:

      :param string href: An URI to the location of the resource.
      :param callback: Gets called with the object.
      :param errback:
          Gets called in case the request fails. And a lot of other
          text so we need multiple lines.
      :throws SomeError: For whatever reason in that case.
      :returns: Something.
.. rst:directive:: .. js:method:: name(signature)

   This directive is an alias for :rst:dir:`js:function`, however it describes
   a function that is implemented as a method on a class object.

   .. versionadded:: 1.6
.. rst:directive:: .. js:class:: name

   Describes a constructor that creates an object.  This is basically like a
   function but will show up with a `class` prefix::

      .. js:class:: MyAnimal(name[, age])

         :param string name: The name of the animal
         :param number age: an optional age for the animal

   This is rendered as:

   .. js:class:: MyAnimal(name[, age])
      :noindex:

      :param string name: The name of the animal
      :param number age: an optional age for the animal
.. rst:directive:: .. js:data:: name

   Describes a global variable or constant.
.. rst:directive:: .. js:attribute:: object.name

   Describes the attribute *name* of *object*.

These roles are provided to refer to the described objects:

.. rst:role:: js:mod
          js:func
          js:meth
          js:class
          js:data
          js:attr

The reStructuredText domain

The reStructuredText domain (name rst) provides the following directives:

.. rst:directive:: .. rst:directive:: name

   Describes a reST directive.  The *name* can be a single directive name or
   actual directive syntax (`..` prefix and `::` suffix) with arguments that
   will be rendered differently.  For example::

      .. rst:directive:: foo

         Foo description.

      .. rst:directive:: .. bar:: baz

         Bar description.

   will be rendered as:

   .. rst:directive:: foo
      :noindex:

      Foo description.

   .. rst:directive:: .. bar:: baz
      :noindex:

      Bar description.
.. rst:directive:: .. rst:directive:option:: name

   Describes an option for reST directive.  The *name* can be a single option
   name or option name with arguments which separated with colon (``:``).
   For example::

       .. rst:directive:: toctree

          .. rst:directive:option:: caption: caption of ToC

          .. rst:directive:option:: glob

   will be rendered as:

   .. rst:directive:: toctree
      :noindex:

      .. rst:directive:option:: caption: caption of ToC
         :noindex:

      .. rst:directive:option:: glob
         :noindex:

   .. rubric:: options

   .. rst:directive:option:: type: description of argument
      :type: text

      Describe the type of option value.

      For example::

         .. rst:directive:: toctree

            .. rst:directive:option:: maxdepth
               :type: integer or no value

      .. versionadded:: 2.1
.. rst:directive:: .. rst:role:: name

   Describes a reST role.  For example::

      .. rst:role:: foo

         Foo description.

   will be rendered as:

   .. rst:role:: foo
      :noindex:

      Foo description.

These roles are provided to refer to the described objects:

.. rst:role:: rst:dir
              rst:role

The Math Domain

The math domain (name math) provides the following roles:

.. rst:role:: math:numref

   Role for cross-referencing equations defined by :rst:dir:`math` directive
   via their label.  Example::

      .. math:: e^{i\pi} + 1 = 0
         :label: euler

      Euler's identity, equation :math:numref:`euler`, was elected one of the
      most beautiful mathematical formulas.

   .. versionadded:: 1.8

More domains

The sphinx-contrib repository contains more domains available as extensions; currently Ada, CoffeeScript, Erlang, HTTP, Lasso, MATLAB, PHP, and Ruby domains. Also available are domains for Chapel, Common Lisp, dqn, Go, Jinja, Operation, and Scala.