Skip to content

Latest commit

 

History

History
506 lines (364 loc) · 23.8 KB

File metadata and controls

506 lines (364 loc) · 23.8 KB

Messaging

The Spring Framework provides extensive support for integrating with messaging systems, from simplified use of the JMS API using JmsTemplate to a complete infrastructure to receive messages asynchronously. Spring AMQP provides a similar feature set for the Advanced Message Queuing Protocol. Spring Boot also provides auto-configuration options for RabbitTemplate and RabbitMQ. Spring WebSocket natively includes support for STOMP messaging, and Spring Boot has support for that through starters and a small amount of auto-configuration. Spring Boot also has support for Apache Kafka.

JMS

The javax.jms.ConnectionFactory interface provides a standard method of creating a javax.jms.Connection for interacting with a JMS broker. Although Spring needs a ConnectionFactory to work with JMS, you generally need not use it directly yourself and can instead rely on higher level messaging abstractions. (See the {spring-framework-docs}/integration.html#jms[relevant section] of the Spring Framework reference documentation for details.) Spring Boot also auto-configures the necessary infrastructure to send and receive messages.

ActiveMQ Support

When ActiveMQ is available on the classpath, Spring Boot can also configure a ConnectionFactory. If the broker is present, an embedded broker is automatically started and configured (provided no broker URL is specified through configuration and the embedded broker is not disabled in the configuration).

Note
If you use spring-boot-starter-activemq, the necessary dependencies to connect or embed an ActiveMQ instance are provided, as is the Spring infrastructure to integrate with JMS.

ActiveMQ configuration is controlled by external configuration properties in spring.activemq.*.

By default, ActiveMQ is auto-configured to use the VM transport, which starts a broker embedded in the same JVM instance.

You can disable the embedded broker by configuring the configprop:spring.activemq.in-memory[] property, as shown in the following example:

spring:
  activemq:
    in-memory: false

The embedded broker will also be disabled if you configure the broker URL, as shown in the following example:

spring:
  activemq:
    broker-url: "tcp://192.168.1.210:9876"
    user: "admin"
    password: "secret"

If you want to take full control over the embedded broker, refer to the ActiveMQ documentation for further information.

By default, a CachingConnectionFactory wraps the native ConnectionFactory with sensible settings that you can control by external configuration properties in spring.jms.*:

spring:
  jms:
    cache:
      session-cache-size: 5

If you’d rather use native pooling, you can do so by adding a dependency to org.messaginghub:pooled-jms and configuring the JmsPoolConnectionFactory accordingly, as shown in the following example:

spring:
  activemq:
    pool:
      enabled: true
      max-connections: 50
Tip
See {spring-boot-autoconfigure-module-code}/jms/activemq/ActiveMQProperties.java[ActiveMQProperties] for more of the supported options. You can also register an arbitrary number of beans that implement ActiveMQConnectionFactoryCustomizer for more advanced customizations.

By default, ActiveMQ creates a destination if it does not yet exist so that destinations are resolved against their provided names.

ActiveMQ Artemis Support

Spring Boot can auto-configure a ConnectionFactory when it detects that ActiveMQ Artemis is available on the classpath. If the broker is present, an embedded broker is automatically started and configured (unless the mode property has been explicitly set). The supported modes are embedded (to make explicit that an embedded broker is required and that an error should occur if the broker is not available on the classpath) and native (to connect to a broker using the netty transport protocol). When the latter is configured, Spring Boot configures a ConnectionFactory that connects to a broker running on the local machine with the default settings.

Note
If you use spring-boot-starter-artemis, the necessary dependencies to connect to an existing ActiveMQ Artemis instance are provided, as well as the Spring infrastructure to integrate with JMS. Adding org.apache.activemq:artemis-jms-server to your application lets you use embedded mode.

ActiveMQ Artemis configuration is controlled by external configuration properties in spring.artemis.*. For example, you might declare the following section in application.properties:

spring:
  artemis:
    mode: native
    broker-url: "tcp://192.168.1.210:9876"
    user: "admin"
    password: "secret"

When embedding the broker, you can choose if you want to enable persistence and list the destinations that should be made available. These can be specified as a comma-separated list to create them with the default options, or you can define bean(s) of type org.apache.activemq.artemis.jms.server.config.JMSQueueConfiguration or org.apache.activemq.artemis.jms.server.config.TopicConfiguration, for advanced queue and topic configurations, respectively.

By default, a CachingConnectionFactory wraps the native ConnectionFactory with sensible settings that you can control by external configuration properties in spring.jms.*:

spring:
  jms:
    cache:
      session-cache-size: 5

If you’d rather use native pooling, you can do so by adding a dependency to org.messaginghub:pooled-jms and configuring the JmsPoolConnectionFactory accordingly, as shown in the following example:

spring:
  artemis:
    pool:
      enabled: true
      max-connections: 50

See {spring-boot-autoconfigure-module-code}/jms/artemis/ArtemisProperties.java[ArtemisProperties] for more supported options.

No JNDI lookup is involved, and destinations are resolved against their names, using either the name attribute in the Artemis configuration or the names provided through configuration.

Using a JNDI ConnectionFactory

If you are running your application in an application server, Spring Boot tries to locate a JMS ConnectionFactory by using JNDI. By default, the java:/JmsXA and java:/XAConnectionFactory location are checked. You can use the configprop:spring.jms.jndi-name[] property if you need to specify an alternative location, as shown in the following example:

spring:
  jms:
    jndi-name: "java:/MyConnectionFactory"

Sending a Message

Spring’s JmsTemplate is auto-configured, and you can autowire it directly into your own beans, as shown in the following example:

link:{docs-java}/features/messaging/jms/sending/MyBean.java[role=include]
Note
{spring-framework-api}/jms/core/JmsMessagingTemplate.html[JmsMessagingTemplate] can be injected in a similar manner. If a DestinationResolver or a MessageConverter bean is defined, it is associated automatically to the auto-configured JmsTemplate.

Receiving a Message

When the JMS infrastructure is present, any bean can be annotated with @JmsListener to create a listener endpoint. If no JmsListenerContainerFactory has been defined, a default one is configured automatically. If a DestinationResolver, a MessageConverter, or a javax.jms.ExceptionListener beans are defined, they are associated automatically with the default factory.

By default, the default factory is transactional. If you run in an infrastructure where a JtaTransactionManager is present, it is associated to the listener container by default. If not, the sessionTransacted flag is enabled. In that latter scenario, you can associate your local data store transaction to the processing of an incoming message by adding @Transactional on your listener method (or a delegate thereof). This ensures that the incoming message is acknowledged, once the local transaction has completed. This also includes sending response messages that have been performed on the same JMS session.

The following component creates a listener endpoint on the someQueue destination:

link:{docs-java}/features/messaging/jms/receiving/MyBean.java[role=include]
Tip
See {spring-framework-api}/jms/annotation/EnableJms.html[the Javadoc of @EnableJms] for more details.

If you need to create more JmsListenerContainerFactory instances or if you want to override the default, Spring Boot provides a DefaultJmsListenerContainerFactoryConfigurer that you can use to initialize a DefaultJmsListenerContainerFactory with the same settings as the one that is auto-configured.

For instance, the following example exposes another factory that uses a specific MessageConverter:

link:{docs-java}/features/messaging/jms/receiving/custom/MyJmsConfiguration.java[role=include]

Then you can use the factory in any @JmsListener-annotated method as follows:

link:{docs-java}/features/messaging/jms/receiving/custom/MyBean.java[role=include]

AMQP

The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for message-oriented middleware. The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging solutions. Spring Boot offers several conveniences for working with AMQP through RabbitMQ, including the spring-boot-starter-amqp “Starter”.

RabbitMQ support

RabbitMQ is a lightweight, reliable, scalable, and portable message broker based on the AMQP protocol. Spring uses RabbitMQ to communicate through the AMQP protocol.

RabbitMQ configuration is controlled by external configuration properties in spring.rabbitmq.*. For example, you might declare the following section in application.properties:

spring:
  rabbitmq:
    host: "localhost"
    port: 5672
    username: "admin"
    password: "secret"

Alternatively, you could configure the same connection using the addresses attribute:

spring:
  rabbitmq:
    addresses: "amqp://admin:secret@localhost"
Note
When specifying addresses that way, the host and port properties are ignored. If the address uses the amqps protocol, SSL support is enabled automatically.

See {spring-boot-autoconfigure-module-code}/amqp/RabbitProperties.java[RabbitProperties] for more of the supported property-based configuration options. To configure lower-level details of the RabbitMQ ConnectionFactory that is used by Spring AMQP, define a ConnectionFactoryCustomizer bean.

If a ConnectionNameStrategy bean exists in the context, it will be automatically used to name connections created by the auto-configured CachingConnectionFactory.

Sending a Message

Spring’s AmqpTemplate and AmqpAdmin are auto-configured, and you can autowire them directly into your own beans, as shown in the following example:

link:{docs-java}/features/messaging/amqp/sending/MyBean.java[role=include]
Note
{spring-amqp-api}/rabbit/core/RabbitMessagingTemplate.html[RabbitMessagingTemplate] can be injected in a similar manner. If a MessageConverter bean is defined, it is associated automatically to the auto-configured AmqpTemplate.

If necessary, any org.springframework.amqp.core.Queue that is defined as a bean is automatically used to declare a corresponding queue on the RabbitMQ instance.

To retry operations, you can enable retries on the AmqpTemplate (for example, in the event that the broker connection is lost):

spring:
  rabbitmq:
    template:
      retry:
        enabled: true
        initial-interval: "2s"

Retries are disabled by default. You can also customize the RetryTemplate programmatically by declaring a RabbitRetryTemplateCustomizer bean.

If you need to create more RabbitTemplate instances or if you want to override the default, Spring Boot provides a RabbitTemplateConfigurer bean that you can use to initialize a RabbitTemplate with the same settings as the factories used by the auto-configuration.

Receiving a Message

When the Rabbit infrastructure is present, any bean can be annotated with @RabbitListener to create a listener endpoint. If no RabbitListenerContainerFactory has been defined, a default SimpleRabbitListenerContainerFactory is automatically configured and you can switch to a direct container using the configprop:spring.rabbitmq.listener.type[] property. If a MessageConverter or a MessageRecoverer bean is defined, it is automatically associated with the default factory.

The following sample component creates a listener endpoint on the someQueue queue:

link:{docs-java}/features/messaging/amqp/receiving/MyBean.java[role=include]
Tip
See {spring-amqp-api}/rabbit/annotation/EnableRabbit.html[the Javadoc of @EnableRabbit] for more details.

If you need to create more RabbitListenerContainerFactory instances or if you want to override the default, Spring Boot provides a SimpleRabbitListenerContainerFactoryConfigurer and a DirectRabbitListenerContainerFactoryConfigurer that you can use to initialize a SimpleRabbitListenerContainerFactory and a DirectRabbitListenerContainerFactory with the same settings as the factories used by the auto-configuration.

Tip
It does not matter which container type you chose. Those two beans are exposed by the auto-configuration.

For instance, the following configuration class exposes another factory that uses a specific MessageConverter:

link:{docs-java}/features/messaging/amqp/receiving/custom/MyRabbitConfiguration.java[role=include]

Then you can use the factory in any @RabbitListener-annotated method, as follows:

link:{docs-java}/features/messaging/amqp/receiving/custom/MyBean.java[role=include]

You can enable retries to handle situations where your listener throws an exception. By default, RejectAndDontRequeueRecoverer is used, but you can define a MessageRecoverer of your own. When retries are exhausted, the message is rejected and either dropped or routed to a dead-letter exchange if the broker is configured to do so. By default, retries are disabled. You can also customize the RetryTemplate programmatically by declaring a RabbitRetryTemplateCustomizer bean.

Important
By default, if retries are disabled and the listener throws an exception, the delivery is retried indefinitely. You can modify this behavior in two ways: Set the defaultRequeueRejected property to false so that zero re-deliveries are attempted or throw an AmqpRejectAndDontRequeueException to signal the message should be rejected. The latter is the mechanism used when retries are enabled and the maximum number of delivery attempts is reached.

Apache Kafka Support

Apache Kafka is supported by providing auto-configuration of the spring-kafka project.

Kafka configuration is controlled by external configuration properties in spring.kafka.*. For example, you might declare the following section in application.properties:

spring:
  kafka:
    bootstrap-servers: "localhost:9092"
    consumer:
      group-id: "myGroup"
Tip
To create a topic on startup, add a bean of type NewTopic. If the topic already exists, the bean is ignored.

See {spring-boot-autoconfigure-module-code}/kafka/KafkaProperties.java[KafkaProperties] for more supported options.

Sending a Message

Spring’s KafkaTemplate is auto-configured, and you can autowire it directly in your own beans, as shown in the following example:

link:{docs-java}/features/messaging/kafka/sending/MyBean.java[role=include]
Note
If the property configprop:spring.kafka.producer.transaction-id-prefix[] is defined, a KafkaTransactionManager is automatically configured. Also, if a RecordMessageConverter bean is defined, it is automatically associated to the auto-configured KafkaTemplate.

Receiving a Message

When the Apache Kafka infrastructure is present, any bean can be annotated with @KafkaListener to create a listener endpoint. If no KafkaListenerContainerFactory has been defined, a default one is automatically configured with keys defined in spring.kafka.listener.*.

The following component creates a listener endpoint on the someTopic topic:

link:{docs-java}/features/messaging/kafka/receiving/MyBean.java[role=include]

If a KafkaTransactionManager bean is defined, it is automatically associated to the container factory. Similarly, if a RecordFilterStrategy, ErrorHandler, AfterRollbackProcessor or ConsumerAwareRebalanceListener bean is defined, it is automatically associated to the default factory.

Depending on the listener type, a RecordMessageConverter or BatchMessageConverter bean is associated to the default factory. If only a RecordMessageConverter bean is present for a batch listener, it is wrapped in a BatchMessageConverter.

Tip
A custom ChainedKafkaTransactionManager must be marked @Primary as it usually references the auto-configured KafkaTransactionManager bean.

Kafka Streams

Spring for Apache Kafka provides a factory bean to create a StreamsBuilder object and manage the lifecycle of its streams. Spring Boot auto-configures the required KafkaStreamsConfiguration bean as long as kafka-streams is on the classpath and Kafka Streams is enabled via the @EnableKafkaStreams annotation.

Enabling Kafka Streams means that the application id and bootstrap servers must be set. The former can be configured using spring.kafka.streams.application-id, defaulting to spring.application.name if not set. The latter can be set globally or specifically overridden only for streams.

Several additional properties are available using dedicated properties; other arbitrary Kafka properties can be set using the spring.kafka.streams.properties namespace. See also features.adoc for more information.

To use the factory bean, wire StreamsBuilder into your @Bean as shown in the following example:

link:{docs-java}/features/messaging/kafka/streams/MyKafkaStreamsConfiguration.java[role=include]

By default, the streams managed by the StreamBuilder object it creates are started automatically. You can customize this behavior using the configprop:spring.kafka.streams.auto-startup[] property.

Additional Kafka Properties

The properties supported by auto configuration are shown in application-properties.adoc. Note that, for the most part, these properties (hyphenated or camelCase) map directly to the Apache Kafka dotted properties. Refer to the Apache Kafka documentation for details.

The first few of these properties apply to all components (producers, consumers, admins, and streams) but can be specified at the component level if you wish to use different values. Apache Kafka designates properties with an importance of HIGH, MEDIUM, or LOW. Spring Boot auto-configuration supports all HIGH importance properties, some selected MEDIUM and LOW properties, and any properties that do not have a default value.

Only a subset of the properties supported by Kafka are available directly through the KafkaProperties class. If you wish to configure the producer or consumer with additional properties that are not directly supported, use the following properties:

spring:
  kafka:
    properties:
      "[prop.one]": "first"
    admin:
      properties:
        "[prop.two]": "second"
    consumer:
      properties:
        "[prop.three]": "third"
    producer:
      properties:
        "[prop.four]": "fourth"
    streams:
      properties:
        "[prop.five]": "fifth"

This sets the common prop.one Kafka property to first (applies to producers, consumers and admins), the prop.two admin property to second, the prop.three consumer property to third, the prop.four producer property to fourth and the prop.five streams property to fifth.

You can also configure the Spring Kafka JsonDeserializer as follows:

spring:
  kafka:
    consumer:
      value-deserializer: "org.springframework.kafka.support.serializer.JsonDeserializer"
      properties:
        "[spring.json.value.default.type]": "com.example.Invoice"
        "[spring.json.trusted.packages]": "com.example.main,com.example.another"

Similarly, you can disable the JsonSerializer default behavior of sending type information in headers:

spring:
  kafka:
    producer:
      value-serializer: "org.springframework.kafka.support.serializer.JsonSerializer"
      properties:
        "[spring.json.add.type.headers]": false
Important
Properties set in this way override any configuration item that Spring Boot explicitly supports.

Testing with Embedded Kafka

Spring for Apache Kafka provides a convenient way to test projects with an embedded Apache Kafka broker. To use this feature, annotate a test class with @EmbeddedKafka from the spring-kafka-test module. For more information, please see the Spring for Apache Kafka {spring-kafka-docs}#embedded-kafka-annotation[reference manual].

To make Spring Boot auto-configuration work with the aforementioned embedded Apache Kafka broker, you need to remap a system property for embedded broker addresses (populated by the EmbeddedKafkaBroker) into the Spring Boot configuration property for Apache Kafka. There are several ways to do that:

  • Provide a system property to map embedded broker addresses into configprop:spring.kafka.bootstrap-servers[] in the test class:

link:{docs-java}/features/messaging/kafka/embedded/property/MyTest.java[role=include]
  • Configure a property name on the @EmbeddedKafka annotation:

link:{docs-java}/features/messaging/kafka/embedded/annotation/MyTest.java[role=include]
  • Use a placeholder in configuration properties:

spring:
  kafka:
    bootstrap-servers: "${spring.embedded.kafka.brokers}"