Skip to content

Latest commit

 

History

History
647 lines (459 loc) · 30 KB

File metadata and controls

647 lines (459 loc) · 30 KB

Working with NoSQL Technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies, including:

  • {spring-data-mongodb}[MongoDB]

  • {spring-data-neo4j}[Neo4J]

  • {spring-data-elasticsearch}[Elasticsearch]

  • {spring-data-redis}[Redis]

  • {spring-data-gemfire}[GemFire] or {spring-data-geode}[Geode]

  • {spring-data-cassandra}[Cassandra]

  • {spring-data-couchbase}[Couchbase]

  • {spring-data-ldap}[LDAP]

Spring Boot provides auto-configuration for Redis, MongoDB, Neo4j, Solr, Elasticsearch, Cassandra, Couchbase, LDAP and InfluxDB. Additionally, {spring-boot-for-apache-geode}[Spring Boot for Apache Geode] provides {spring-boot-for-apache-geode-docs}#geode-repositories[auto-configuration for Apache Geode]. You can make use of the other projects, but you must configure them yourself. See the appropriate reference documentation at {spring-data}.

Redis

Redis is a cache, message broker, and richly-featured key-value store. Spring Boot offers basic auto-configuration for the Lettuce and Jedis client libraries and the abstractions on top of them provided by Spring Data Redis.

There is a spring-boot-starter-data-redis “Starter” for collecting the dependencies in a convenient way. By default, it uses Lettuce. That starter handles both traditional and reactive applications.

Tip
We also provide a spring-boot-starter-data-redis-reactive “Starter” for consistency with the other stores with reactive support.

Connecting to Redis

You can inject an auto-configured RedisConnectionFactory, StringRedisTemplate, or vanilla RedisTemplate instance as you would any other Spring Bean. By default, the instance tries to connect to a Redis server at localhost:6379. The following listing shows an example of such a bean:

link:{docs-java}/data/nosql/redis/connecting/MyBean.java[role=include]
Tip
You can also register an arbitrary number of beans that implement LettuceClientConfigurationBuilderCustomizer for more advanced customizations. ClientResources can also be customized using ClientResourcesBuilderCustomizer. If you use Jedis, JedisClientConfigurationBuilderCustomizer is also available. Alternatively, you can register a bean of type RedisStandaloneConfiguration, RedisSentinelConfiguration, or RedisClusterConfiguration to take full control over the configuration.

If you add your own @Bean of any of the auto-configured types, it replaces the default (except in the case of RedisTemplate, when the exclusion is based on the bean name, redisTemplate, not its type).

By default, a pooled connection factory is auto-configured if commons-pool2 is on the classpath.

MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead of traditional table-based relational data. Spring Boot offers several conveniences for working with MongoDB, including the spring-boot-starter-data-mongodb and spring-boot-starter-data-mongodb-reactive “Starters”.

Connecting to a MongoDB Database

To access MongoDB databases, you can inject an auto-configured org.springframework.data.mongodb.MongoDatabaseFactory. By default, the instance tries to connect to a MongoDB server at mongodb://localhost/test. The following example shows how to connect to a MongoDB database:

link:{docs-java}/data/nosql/mongodb/connecting/MyBean.java[role=include]

If you have defined your own MongoClient, it will be used to auto-configure a suitable MongoDatabaseFactory.

The auto-configured MongoClient is created using a MongoClientSettings bean. If you have defined your own MongoClientSettings, it will be used without modification and the spring.data.mongodb properties will be ignored. Otherwise a MongoClientSettings will be auto-configured and will have the spring.data.mongodb properties applied to it. In either case, you can declare one or more MongoClientSettingsBuilderCustomizer beans to fine-tune the MongoClientSettings configuration. Each will be called in order with the MongoClientSettings.Builder that is used to build the MongoClientSettings.

You can set the configprop:spring.data.mongodb.uri[] property to change the URL and configure additional settings such as the replica set, as shown in the following example:

spring:
  data:
    mongodb:
      uri: "mongodb://user:secret@mongo1.example.com:12345,mongo2.example.com:23456/test"

Alternatively, you can specify connection details using discrete properties. For example, you might declare the following settings in your application.properties:

spring:
  data:
    mongodb:
      host: "mongoserver.example.com"
      port: 27017
      database: "test"
      username: "user"
      password: "secret"
Tip
If spring.data.mongodb.port is not specified, the default of 27017 is used. You could delete this line from the example shown earlier.
Tip
If you do not use Spring Data MongoDB, you can inject a MongoClient bean instead of using MongoDatabaseFactory. If you want to take complete control of establishing the MongoDB connection, you can also declare your own MongoDatabaseFactory or MongoClient bean.
Note
If you are using the reactive driver, Netty is required for SSL. The auto-configuration configures this factory automatically if Netty is available and the factory to use has not been customized already.

MongoTemplate

{spring-data-mongodb}[Spring Data MongoDB] provides a {spring-data-mongodb-api}/core/MongoTemplate.html[MongoTemplate] class that is very similar in its design to Spring’s JdbcTemplate. As with JdbcTemplate, Spring Boot auto-configures a bean for you to inject the template, as follows:

link:{docs-java}/data/nosql/mongodb/template/MyBean.java[role=include]

See the {spring-data-mongodb-api}/core/MongoOperations.html[MongoOperations Javadoc] for complete details.

Spring Data MongoDB Repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier, the basic principle is that queries are constructed automatically, based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure. You could take the JPA example from earlier and, assuming that City is now a MongoDB data class rather than a JPA @Entity, it works in the same way, as shown in the following example:

link:{docs-java}/data/nosql/mongodb/repositories/CityRepository.java[role=include]
Tip
You can customize document scanning locations by using the @EntityScan annotation.
Tip
For complete details of Spring Data MongoDB, including its rich object mapping technologies, see its {spring-data-mongodb}[reference documentation].

Embedded Mongo

Spring Boot offers auto-configuration for Embedded Mongo. To use it in your Spring Boot application, add a dependency on de.flapdoodle.embed:de.flapdoodle.embed.mongo and set the configprop:spring.mongodb.embedded.version[] property to match the version of MongoDB that your application will use in production.

Note
The default download configuration allows access to most of the versions listed in {embedded-mongo-code}/src/main/java/de/flapdoodle/embed/mongo/distribution/Version.java[Embedded Mongo’s Version class] as well as some others. Configuring an inaccessible version will result in an error when attempting to download the server. Such an error can be corrected by defining an appropriately configured DownloadConfigBuilderCustomizer bean.

The port that Mongo listens on can be configured by setting the configprop:spring.data.mongodb.port[] property. To use a randomly allocated free port, use a value of 0. The MongoClient created by MongoAutoConfiguration is automatically configured to use the randomly allocated port.

Note
If you do not configure a custom port, the embedded support uses a random port (rather than 27017) by default.

If you have SLF4J on the classpath, the output produced by Mongo is automatically routed to a logger named org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongo.

You can declare your own IMongodConfig and IRuntimeConfig beans to take control of the Mongo instance’s configuration and logging routing. The download configuration can be customized by declaring a DownloadConfigBuilderCustomizer bean.

Neo4j

Neo4j is an open-source NoSQL graph database that uses a rich data model of nodes connected by first class relationships, which is better suited for connected big data than traditional RDBMS approaches. Spring Boot offers several conveniences for working with Neo4j, including the spring-boot-starter-data-neo4j “Starter”.

Connecting to a Neo4j Database

To access a Neo4j server, you can inject an auto-configured org.neo4j.driver.Driver. By default, the instance tries to connect to a Neo4j server at localhost:7687 using the Bolt protocol. The following example shows how to inject a Neo4j Driver that gives you access, amongst other things, to a Session:

link:{docs-java}/data/nosql/neo4j/connecting/MyBean.java[role=include]

You can configure various aspects of the driver using spring.neo4j.* properties. The following example shows how to configure the uri and credentials to use:

spring:
  neo4j:
    uri: "bolt://my-server:7687"
    authentication:
      username: "neo4j"
      password: "secret"

The auto-configured Driver is created using ConfigBuilder. To fine-tune its configuration, declare one or more ConfigBuilderCustomizer beans. Each will be called in order with the ConfigBuilder that is used to build the Driver.

Spring Data Neo4j Repositories

Spring Data includes repository support for Neo4j. For complete details of Spring Data Neo4j, see the {spring-data-neo4j-docs}[reference documentation].

Spring Data Neo4j shares the common infrastructure with Spring Data JPA as many other Spring Data modules do. You could take the JPA example from earlier and define City as Spring Data Neo4j @Node rather than JPA @Entity and the repository abstraction works in the same way, as shown in the following example:

link:{docs-java}/data/nosql/neo4j/repositories/CityRepository.java[role=include]

The spring-boot-starter-data-neo4j “Starter” enables the repository support as well as transaction management. Spring Boot supports both classic and reactive Neo4j repositories, using the Neo4jTemplate or ReactiveNeo4jTemplate beans. When Project Reactor is available on the classpath, the reactive style is also auto-configured.

You can customize the locations to look for repositories and entities by using @EnableNeo4jRepositories and @EntityScan respectively on a @Configuration-bean.

Note

In an application using the reactive style, a ReactiveTransactionManager is not auto-configured. To enable transaction management, the following bean must be defined in your configuration:

link:{docs-java}/data/nosql/neo4j/repositories/MyNeo4jConfiguration.java[role=include]

Solr

Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr 5 client library.

Connecting to Solr

You can inject an auto-configured SolrClient instance as you would any other Spring bean. By default, the instance tries to connect to a server at http://localhost:8983/solr. The following example shows how to inject a Solr bean:

link:{docs-java}/data/nosql/solr/connecting/MyBean.java[role=include]

If you add your own @Bean of type SolrClient, it replaces the default.

Elasticsearch

Elasticsearch is an open source, distributed, RESTful search and analytics engine. Spring Boot offers basic auto-configuration for Elasticsearch clients.

Spring Boot supports several clients:

  • The official Java "Low Level" and "High Level" REST clients

  • The ReactiveElasticsearchClient provided by Spring Data Elasticsearch

Spring Boot provides a dedicated “Starter”, spring-boot-starter-data-elasticsearch.

Connecting to Elasticsearch Using REST clients

Elasticsearch ships two different REST clients that you can use to query a cluster: the "Low Level" client and the "High Level" client. Spring Boot provides support for the "High Level" client, which ships with org.elasticsearch.client:elasticsearch-rest-high-level-client. Additionally, Spring Boot provides support for a reactive client, based on Spring Framework’s WebClient, that ships with org.springframework.data:spring-data-elasticsearch. By default, the clients will target http://localhost:9200. You can use spring.elasticsearch.* properties to further tune how the clients are configured, as shown in the following example:

spring:
  elasticsearch:
    uris: "https://search.example.com:9200"
    socket-timeout: "10s"
    username: "user"
    password: "secret"
Connecting to Elasticsearch Using RestHighLevelClient

If you have elasticsearch-rest-high-level-client on the classpath, Spring Boot will auto-configure and register a RestHighLevelClient bean. In addition to the properties described previously, to fine-tune the RestHighLevelClient, you can register an arbitrary number of beans that implement RestClientBuilderCustomizer for more advanced customizations. To take full control over its registration, define a RestClientBuilder bean.

Tip
If your application needs access to a "Low Level" RestClient, you can get it by calling client.getLowLevelClient() on the auto-configured RestHighLevelClient.

Additionally, if elasticsearch-rest-client-sniffer is on the classpath, a Sniffer is auto-configured to automatically discover nodes from a running Elasticsearch cluster and set them on the RestHighLevelClient bean. You can further tune how Sniffer is configured, as shown in the following example:

spring:
  elasticsearch:
    restclient:
      sniffer:
        interval: "10m"
        delay-after-failure: "30s"
Connecting to Elasticsearch Using ReactiveElasticsearchClient

{spring-data-elasticsearch}[Spring Data Elasticsearch] ships ReactiveElasticsearchClient for querying Elasticsearch instances in a reactive fashion. It is built on top of WebFlux’s WebClient, so both spring-boot-starter-elasticsearch and spring-boot-starter-webflux dependencies are useful to enable this support.

By default, Spring Boot will auto-configure and register a ReactiveElasticsearchClient. In addition to the properties described previously, the spring.elasticsearch.webclient.* properties can be used to configure reactive-specific settings, as shown in the following example:

spring:
  elasticsearch:
    webclient:
      max-in-memory-size: "1MB"

If the spring.elasticsearch. and spring.elasticsearch.webclient. configuration properties are not enough and you’d like to fully control the client configuration, you can register a custom ClientConfiguration bean.

Connecting to Elasticsearch by Using Spring Data

To connect to Elasticsearch, a RestHighLevelClient bean must be defined, auto-configured by Spring Boot or manually provided by the application (see previous sections). With this configuration in place, an ElasticsearchRestTemplate can be injected like any other Spring bean, as shown in the following example:

link:{docs-java}/data/nosql/elasticsearch/connectingusingspringdata/MyBean.java[role=include]

In the presence of spring-data-elasticsearch and the required dependencies for using a WebClient (typically spring-boot-starter-webflux), Spring Boot can also auto-configure a ReactiveElasticsearchClient and a ReactiveElasticsearchTemplate as beans. They are the reactive equivalent of the other REST clients.

Spring Data Elasticsearch Repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed earlier, the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure. You could take the JPA example from earlier and, assuming that City is now an Elasticsearch @Document class rather than a JPA @Entity, it works in the same way.

Tip
For complete details of Spring Data Elasticsearch, see the {spring-data-elasticsearch-docs}[reference documentation].

Spring Boot supports both classic and reactive Elasticsearch repositories, using the ElasticsearchRestTemplate or ReactiveElasticsearchTemplate beans. Most likely those beans are auto-configured by Spring Boot given the required dependencies are present.

If you wish to use your own template for backing the Elasticsearch repositories, you can add your own ElasticsearchRestTemplate or ElasticsearchOperations @Bean, as long as it is named "elasticsearchTemplate". Same applies to ReactiveElasticsearchTemplate and ReactiveElasticsearchOperations, with the bean name "reactiveElasticsearchTemplate".

You can choose to disable the repositories support with the following property:

spring:
  data:
    elasticsearch:
      repositories:
        enabled: false

Cassandra

Cassandra is an open source, distributed database management system designed to handle large amounts of data across many commodity servers. Spring Boot offers auto-configuration for Cassandra and the abstractions on top of it provided by Spring Data Cassandra. There is a spring-boot-starter-data-cassandra “Starter” for collecting the dependencies in a convenient way.

Connecting to Cassandra

You can inject an auto-configured CassandraTemplate or a Cassandra CqlSession instance as you would with any other Spring Bean. The spring.data.cassandra.* properties can be used to customize the connection. Generally, you provide keyspace-name and contact-points as well the local datacenter name, as shown in the following example:

spring:
  data:
    cassandra:
      keyspace-name: "mykeyspace"
      contact-points: "cassandrahost1:9042,cassandrahost2:9042"
      local-datacenter: "datacenter1"

If the port is the same for all your contact points you can use a shortcut and only specify the host names, as shown in the following example:

spring:
  data:
    cassandra:
      keyspace-name: "mykeyspace"
      contact-points: "cassandrahost1,cassandrahost2"
      local-datacenter: "datacenter1"
Tip
Those two examples are identical as the port default to 9042. If you need to configure the port, use spring.data.cassandra.port.
Note

The Cassandra driver has its own configuration infrastructure that loads an application.conf at the root of the classpath.

Spring Boot does not look for such a file by default but can load one using spring.data.cassandra.config. If a property is both present in spring.data.cassandra.* and the configuration file, the value in spring.data.cassandra.* takes precedence.

For more advanced driver customizations, you can register an arbitrary number of beans that implement DriverConfigLoaderBuilderCustomizer. The CqlSession can be customized with a bean of type CqlSessionBuilderCustomizer.

Note
If you use CqlSessionBuilder to create multiple CqlSession beans, keep in mind the builder is mutable so make sure to inject a fresh copy for each session.

The following code listing shows how to inject a Cassandra bean:

link:{docs-java}/data/nosql/cassandra/connecting/MyBean.java[role=include]

If you add your own @Bean of type CassandraTemplate, it replaces the default.

Spring Data Cassandra Repositories

Spring Data includes basic repository support for Cassandra. Currently, this is more limited than the JPA repositories discussed earlier and needs to annotate finder methods with @Query.

Tip
For complete details of Spring Data Cassandra, see the reference documentation.

Couchbase

Couchbase is an open-source, distributed, multi-model NoSQL document-oriented database that is optimized for interactive applications. Spring Boot offers auto-configuration for Couchbase and the abstractions on top of it provided by Spring Data Couchbase. There are spring-boot-starter-data-couchbase and spring-boot-starter-data-couchbase-reactive “Starters” for collecting the dependencies in a convenient way.

Connecting to Couchbase

You can get a Cluster by adding the Couchbase SDK and some configuration. The spring.couchbase.* properties can be used to customize the connection. Generally, you provide the connection string, username, and password, as shown in the following example:

spring:
  couchbase:
    connection-string: "couchbase://192.168.1.123"
    username: "user"
    password: "secret"

It is also possible to customize some of the ClusterEnvironment settings. For instance, the following configuration changes the timeout to use to open a new Bucket and enables SSL support:

spring:
  couchbase:
    env:
      timeouts:
        connect: "3s"
      ssl:
        key-store: "/location/of/keystore.jks"
        key-store-password: "secret"
Tip
Check the spring.couchbase.env.* properties for more details. To take more control, one or more ClusterEnvironmentBuilderCustomizer beans can be used.

Spring Data Couchbase Repositories

Spring Data includes repository support for Couchbase. For complete details of Spring Data Couchbase, see the {spring-data-couchbase-docs}[reference documentation].

You can inject an auto-configured CouchbaseTemplate instance as you would with any other Spring Bean, provided a CouchbaseClientFactory bean is available. This happens when a Cluster is available, as described above, and a bucket name has been specified:

spring:
  data:
    couchbase:
      bucket-name: "my-bucket"

The following examples shows how to inject a CouchbaseTemplate bean:

link:{docs-java}/data/nosql/couchbase/repositories/MyBean.java[role=include]

There are a few beans that you can define in your own configuration to override those provided by the auto-configuration:

  • A CouchbaseMappingContext @Bean with a name of couchbaseMappingContext.

  • A CustomConversions @Bean with a name of couchbaseCustomConversions.

  • A CouchbaseTemplate @Bean with a name of couchbaseTemplate.

To avoid hard-coding those names in your own config, you can reuse BeanNames provided by Spring Data Couchbase. For instance, you can customize the converters to use, as follows:

link:{docs-java}/data/nosql/couchbase/repositories/MyCouchbaseConfiguration.java[role=include]

LDAP

LDAP (Lightweight Directory Access Protocol) is an open, vendor-neutral, industry standard application protocol for accessing and maintaining distributed directory information services over an IP network. Spring Boot offers auto-configuration for any compliant LDAP server as well as support for the embedded in-memory LDAP server from UnboundID.

LDAP abstractions are provided by Spring Data LDAP. There is a spring-boot-starter-data-ldap “Starter” for collecting the dependencies in a convenient way.

Connecting to an LDAP Server

To connect to an LDAP server, make sure you declare a dependency on the spring-boot-starter-data-ldap “Starter” or spring-ldap-core and then declare the URLs of your server in your application.properties, as shown in the following example:

spring:
  ldap:
    urls: "ldap://myserver:1235"
    username: "admin"
    password: "secret"

If you need to customize connection settings, you can use the spring.ldap.base and spring.ldap.base-environment properties.

An LdapContextSource is auto-configured based on these settings. If a DirContextAuthenticationStrategy bean is available, it is associated to the auto-configured LdapContextSource. If you need to customize it, for instance to use a PooledContextSource, you can still inject the auto-configured LdapContextSource. Make sure to flag your customized ContextSource as @Primary so that the auto-configured LdapTemplate uses it.

Spring Data LDAP Repositories

Spring Data includes repository support for LDAP. For complete details of Spring Data LDAP, see the reference documentation.

You can also inject an auto-configured LdapTemplate instance as you would with any other Spring Bean, as shown in the following example:

link:{docs-java}/data/nosql/ldap/repositories/MyBean.java[role=include]

Embedded In-memory LDAP Server

For testing purposes, Spring Boot supports auto-configuration of an in-memory LDAP server from UnboundID. To configure the server, add a dependency to com.unboundid:unboundid-ldapsdk and declare a configprop:spring.ldap.embedded.base-dn[] property, as follows:

spring:
  ldap:
    embedded:
      base-dn: "dc=spring,dc=io"
Note

It is possible to define multiple base-dn values, however, since distinguished names usually contain commas, they must be defined using the correct notation.

In yaml files, you can use the yaml list notation. In properties files, you must include the index as part of the property name:

spring.ldap.embedded.base-dn:
  - "dc=spring,dc=io"
  - "dc=pivotal,dc=io"

By default, the server starts on a random port and triggers the regular LDAP support. There is no need to specify a configprop:spring.ldap.urls[] property.

If there is a schema.ldif file on your classpath, it is used to initialize the server. If you want to load the initialization script from a different resource, you can also use the configprop:spring.ldap.embedded.ldif[] property.

By default, a standard schema is used to validate LDIF files. You can turn off validation altogether by setting the configprop:spring.ldap.embedded.validation.enabled[] property. If you have custom attributes, you can use configprop:spring.ldap.embedded.validation.schema[] to define your custom attribute types or object classes.

InfluxDB

InfluxDB is an open-source time series database optimized for fast, high-availability storage and retrieval of time series data in fields such as operations monitoring, application metrics, Internet-of-Things sensor data, and real-time analytics.

Connecting to InfluxDB

Spring Boot auto-configures an InfluxDB instance, provided the influxdb-java client is on the classpath and the URL of the database is set, as shown in the following example:

spring:
  influx:
    url: "https://172.0.0.1:8086"

If the connection to InfluxDB requires a user and password, you can set the spring.influx.user and spring.influx.password properties accordingly.

InfluxDB relies on OkHttp. If you need to tune the http client InfluxDB uses behind the scenes, you can register an InfluxDbOkHttpClientBuilderProvider bean.

If you need more control over the configuration, consider registering an InfluxDbCustomizer bean.