Skip to content
/ lua-fsm Public

A finite state machine framework for LUA, ported from javascript-state-machine

License

Notifications You must be signed in to change notification settings

recih/lua-fsm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lua Finite State Machine (v2.3.2)

Build Status This standalone lua micro-framework provides a finite state machine for your pleasure.

Download

You can download luafsm.lua,

Alternatively:

git clone https://github.com/recih/lua-fsm.git
  • All code is in luafsm.lua
  • No 3rd party library is required
  • Busted tests can be run with "busted" (after installing busted with "luarocks install busted")

Usage

Simply use require:

local luafsm = require("luafsm")

In its simplest form, create a standalone state machine using:

local fsm = luafsm.create {
  initial = 'green',
  events = {
    { name = 'warn',  from = 'green',  to = 'yellow' },
    { name = 'panic', from = 'yellow', to = 'red'    },
    { name = 'calm',  from = 'red',    to = 'yellow' },
    { name = 'clear', from = 'yellow', to = 'green'  },
  }
}

... will create an object with a method for each event:

  • fsm:warn() - transition from 'green' to 'yellow'
  • fsm:panic() - transition from 'yellow' to 'red'
  • fsm:calm() - transition from 'red' to 'yellow'
  • fsm:clear() - transition from 'yellow' to 'green'

along with the following members:

  • fsm.current - contains the current state
  • fsm:is(s) - return true if state s is the current state
  • fsm:can(e) - return true if event e can be fired in the current state
  • fsm:cannot(e) - return true if event e cannot be fired in the current state

Multiple 'from' and 'to' states for a single event

If an event is allowed from multiple states, and always transitions to the same state, then simply provide an array of states in the from attribute of an event. However, if an event is allowed from multiple states, but should transition to a different state depending on the current state, then provide multiple event entries with the same name:

local fsm = luafsm.create{
  initial = 'hungry',
  events = {
    { name = 'eat',  from = 'hungry',                                to = 'satisfied' },
    { name = 'eat',  from = 'satisfied',                             to = 'full'      },
    { name = 'eat',  from = 'full',                                  to = 'sick'      },
    { name = 'rest', from = {'hungry', 'satisfied', 'full', 'sick'}, to = 'hungry'    },
  }
}

This example will create an object with 2 event methods:

  • fsm:eat()
  • fsm:rest()

The rest event will always transition to the hungry state, while the eat event will transition to a state that is dependent on the current state.

NOTE: The rest event could use a wildcard '*' for the 'from' state if it should be allowed from any current state.

NOTE: The rest event in the above example can also be specified as multiple events with the same name if you prefer the verbose approach.

Callbacks

4 types of callback are available by attaching methods to your StateMachine using the following naming conventions:

  • onbeforeEVENT - fired before the event
  • onleaveSTATE - fired when leaving the old state
  • onenterSTATE - fired when entering the new state
  • onafterEVENT - fired after the event

(using your specific EVENT and STATE names)

For convenience, the 2 most useful callbacks can be shortened:

  • onEVENT - convenience shorthand for onafterEVENT
  • onSTATE - convenience shorthand for onenterSTATE

In addition, 4 general-purpose callbacks can be used to capture all event and state changes:

  • onbeforeevent - fired before any event
  • onleavestate - fired when leaving any state
  • onenterstate - fired when entering any state
  • onafterevent - fired after any event

All callbacks will be passed the same arguments:

  • self state machine instance itself
  • event a event object (a table) like this: { name = 'warn', from = 'green', to = 'yellow' }
  • (followed by any arguments you passed into the original event method)

Callbacks can be specified when the state machine is first created:

local fsm = luafsm.create{
  initial = 'green',
  events = {
    { name = 'warn',  from = 'green',  to = 'yellow' },
    { name = 'panic', from = 'yellow', to = 'red'    },
    { name = 'calm',  from = 'red',    to = 'yellow' },
    { name = 'clear', from = 'yellow', to = 'green'  },
  },
  callbacks = {
    onpanic =  function(self, event, msg) print('panic! ' .. msg)    end,
    onclear =  function(self, event, msg) print('thanks to ' .. msg) end,
    ongreen =  function(self, event)      print('green')             end,
    onyellow = function(self, event)      print('yellow')            end,
    onred =    function(self, event)      print('red')               end,
  }
}

fsm:panic('killer bees')
fsm:clear('sedatives in the honey pots')
...

Additionally, they can be added and removed from the state machine at any time:

fsm.ongreen      = nil
fsm.onyellow     = nil
fsm.onred        = nil
fsm.onenterstate = function(self, event) print(event.to) end

The order in which callbacks occur is as follows:

assume event go transitions from red state to green

  • onbeforego - specific handler for the go event only
  • onbeforeevent - generic handler for all events
  • onleavered - specific handler for the red state only
  • onleavestate - generic handler for all states
  • onentergreen - specific handler for the green state only
  • onenterstate - generic handler for all states
  • onaftergo - specific handler for the go event only
  • onafterevent - generic handler for all events

NOTE: the legacy onchangestate handler has been deprecated and will be removed in a future version

You can affect the event in 3 ways:

  • return false from an onbeforeEVENT handler to cancel the event.
  • return false from an onleaveSTATE handler to cancel the event.
  • return ASYNC from an onleaveSTATE handler to perform an asynchronous state transition (see next section)

Asynchronous State Transitions

Sometimes, you need to execute some asynchronous code during a state transition and ensure the new state is not entered until your code has completed.

A good example of this is when you transition out of a menu state, perhaps you want to gradually fade the menu away, or slide it off the screen and don't want to transition to your game state until after that animation has been performed.

You can now return luafsm.ASYNC from your onleavestate handler and the state machine will be 'put on hold' until you are ready to trigger the transition using the new transition() method.

For example:

    local fsm = luafsm.create{

      initial = 'menu',

      events = {
        { name = 'play', from = 'menu', to = 'game' },
        { name = 'quit', from = 'game', to = 'menu' }
      },

      callbacks = {

        onentermenu = function() menu_show() end,
        onentergame = function() game_show() end,

        onleavemenu = function()
          menu_fade_out(function()
            fsm:transition()
          end)
          return luafsm.ASYNC -- tell luafsm to defer next state until we call transition (in fadeOut callback above)
        end,

        onleavegame = function()
          game_slide_down(function()
            fsm:transition()
          end)
          return luafsm.ASYNC -- tell luafsm to defer next state until we call transition (in slideDown callback above)
        end,

      }
    }

_NOTE: If you decide to cancel the ASYNC event, you can call fsm.transition.cancel()

State Machine Classes

You can also turn all instances of a class into an FSM by applying the state machine functionality to the prototype, including your callbacks in your prototype, and providing a startup event for use when constructing instances:

local my_fsm = {}
local prototype = {

  onpanic = function(self, event) print('panic')        end,
  onclear = function(self, event) print('all is clear') end,

  -- my other prototype methods

};

function my_fsm.new()  -- my constructor function
  local t = {}
  setmetatable(t, {__index = prototype})
  t:startup()
  return t
end

luafsm.create {
  target = prototype,
  events = {
    { name = 'startup', from = 'none',   to = 'green'  },
    { name = 'warn',    from = 'green',  to = 'yellow' },
    { name = 'panic',   from = 'yellow', to = 'red'    },
    { name = 'calm',    from = 'red',    to = 'yellow' },
    { name = 'clear',   from = 'yellow', to = 'green'  },
  }
}

This should be easy to adjust to fit your appropriate mechanism for object construction.

NOTE: the startup event can be given any name, but it must be present in some form to ensure that each instance constructed is initialized with its own unique current state.

Initialization Options

How the state machine should initialize can depend on your application requirements, so the library provides a number of simple options.

By default, if you dont specify any initial state, the state machine will be in the 'none' state and you would need to provide an event to take it out of this state:

local fsm = luafsm.create {
  events = {
    { name = 'startup', from = 'none',  to = 'green' },
    { name = 'panic',   from = 'green', to = 'red'   },
    { name = 'calm',    from = 'red',   to = 'green' },
  }
}
print(fsm.current) -- "none"
fsm:startup()
print(fsm.current) -- "green"

If you specify the name of your initial state (as in all the earlier examples), then an implicit startup event will be created for you and fired when the state machine is constructed.

local fsm = luafsm.create {
  initial = 'green',
  events = {
    { name = 'panic', from = 'green', to = 'red'   },
    { name = 'calm',  from = 'red',   to = 'green' },
  }
}
print(fsm.current) -- "green"

If your object already has a startup method you can use a different name for the initial event

local fsm = luafsm.create {
  initial = { state = 'green', event = 'init' },
  events = {
    { name = 'panic', from = 'green', to = 'red'   },
    { name = 'calm',  from = 'red',   to = 'green' },
  }
}
print(fsm.current) -- "green"

Finally, if you want to wait to call the initial state transition event until a later date you can defer it:

local fsm = luafsm.create {
  initial = { state = 'green', event = 'init', defer = true },
  events = {
    { name = 'panic', from = 'green', to = 'red'   },
    { name = 'calm',  from = 'red',   to = 'green' },
  }
}
print(fsm.current) -- "none"
fsm:init()
print(fsm.current) -- "green"

Of course, we have now come full circle, this last example is pretty much functionally the same as the first example in this section where you simply define your own startup event.

So you have a number of choices available to you when initializing your state machine.

IMPORTANT NOTE: if you are using the pattern described in the previous section "State Machine Classes", and wish to declare an initial state in this manner, you MUST use the defer: true attribute and manually call the starting event in your constructor function. This will ensure that each instance gets its own unique current state, rather than an (unwanted) shared current state on the prototype object itself.

Handling Failures

By default, if you try to call an event method that is not allowed in the current state, the state machine will throw an exception. If you prefer to handle the problem yourself, you can define a custom error handler:

local fsm = luafsm.create {
  initial = 'green',
  error = function(self, event, error_code, error_message)
    return 'event ' .. event.name .. ' was naughty :- ' .. error_message
  end,
  events = {
    { name = 'panic', from = 'green', to = 'red'   },
    { name = 'calm',  from = 'red',   to = 'green' },
  }
}
print(fsm:calm()) -- "event calm was naughty :- event not allowed in current state green"

License

See LICENSE file.

About

A finite state machine framework for LUA, ported from javascript-state-machine

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages