Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve documentation for constructors of pinned Boxes #97655

Merged
merged 1 commit into from Jun 3, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
32 changes: 28 additions & 4 deletions library/alloc/src/boxed.rs
Expand Up @@ -266,8 +266,13 @@ impl<T> Box<T> {
Self::new_zeroed_in(Global)
}

/// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
/// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
/// `x` will be pinned in memory and unable to be moved.
///
/// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
/// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
/// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
/// construct a (pinned) `Box` in a different way than with [`Box::new`].
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "pin", since = "1.33.0")]
#[must_use]
Expand Down Expand Up @@ -553,8 +558,13 @@ impl<T, A: Allocator> Box<T, A> {
unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
}

/// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement `Unpin`, then
/// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
/// `x` will be pinned in memory and unable to be moved.
///
/// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
/// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
/// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
/// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "allocator_api", issue = "32838")]
#[rustc_const_unstable(feature = "const_box", issue = "92521")]
Expand Down Expand Up @@ -1170,12 +1180,18 @@ impl<T: ?Sized, A: Allocator> Box<T, A> {
unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
}

/// Converts a `Box<T>` into a `Pin<Box<T>>`
/// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
/// `*boxed` will be pinned in memory and unable to be moved.
///
/// This conversion does not allocate on the heap and happens in place.
///
/// This is also available via [`From`].
///
/// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
/// can also be written more concisely using <code>[Box::pin]\(x)</code>.
/// This `into_pin` method is useful if you already have a `Box<T>`, or you are
/// constructing a (pinned) `Box` in a different way than with [`Box::new`].
///
/// # Notes
///
/// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
Expand Down Expand Up @@ -1437,9 +1453,17 @@ impl<T: ?Sized, A: Allocator> const From<Box<T, A>> for Pin<Box<T, A>>
where
A: 'static,
{
/// Converts a `Box<T>` into a `Pin<Box<T>>`
/// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
/// `*boxed` will be pinned in memory and unable to be moved.
///
/// This conversion does not allocate on the heap and happens in place.
///
/// This is also available via [`Box::into_pin`].
///
/// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
/// can also be written more concisely using <code>[Box::pin]\(x)</code>.
/// This `From` implementation is useful if you already have a `Box<T>`, or you are
/// constructing a (pinned) `Box` in a different way than with [`Box::new`].
fn from(boxed: Box<T, A>) -> Self {
Box::into_pin(boxed)
}
Expand Down