Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove target for b* #2238

Closed
wants to merge 1 commit into from
Closed

Remove target for b* #2238

wants to merge 1 commit into from

Conversation

nicholasdille
Copy link
Contributor

No description provided.

Copy link

github-actions bot commented Dec 21, 2023

🔍 Vulnerabilities of ghcr.io/uniget-org/tools/bumblebee:0.0.14

📦 Image Reference ghcr.io/uniget-org/tools/bumblebee:0.0.14
digestsha256:e5c03cd965f10f850eb7bdb50169552659b0a1caeae598069fe353ea8ed910ad
vulnerabilitiescritical: 3 high: 41 medium: 22 low: 2 unspecified: 3
platformlinux/amd64
size8.5 MB
packages58
critical: 3 high: 32 medium: 12 low: 1 stdlib 1.17.6 (golang)

pkg:golang/stdlib@1.17.6

critical : CVE--2023--24540

Affected range<1.19.9
Fixed version1.19.9
Description

Not all valid JavaScript whitespace characters are considered to be whitespace. Templates containing whitespace characters outside of the character set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain actions may not be properly sanitized during execution.

critical : CVE--2023--24538

Affected range<1.19.8
Fixed version1.19.8
Description

Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected.

Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template.

As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml.

With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21.

Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution.

critical : CVE--2022--23806

Affected range>=1.17.0-0
<1.17.7
Fixed version1.17.7
Description

Some big.Int values that are not valid field elements (negative or overflowing) might cause Curve.IsOnCurve to incorrectly return true. Operating on those values may cause a panic or an invalid curve operation. Note that Unmarshal will never return such values.

high : CVE--2023--29403

Affected range<1.19.10
Fixed version1.19.10
Description

On Unix platforms, the Go runtime does not behave differently when a binary is run with the setuid/setgid bits. This can be dangerous in certain cases, such as when dumping memory state, or assuming the status of standard i/o file descriptors.

If a setuid/setgid binary is executed with standard I/O file descriptors closed, opening any files can result in unexpected content being read or written with elevated privileges. Similarly, if a setuid/setgid program is terminated, either via panic or signal, it may leak the contents of its registers.

high : CVE--2022--30580

Affected range<1.17.11
Fixed version1.17.11
Description

On Windows, executing Cmd.Run, Cmd.Start, Cmd.Output, or Cmd.CombinedOutput when Cmd.Path is unset will unintentionally trigger execution of any binaries in the working directory named either "..com" or "..exe".

high : CVE--2023--45287

Affected range<1.20.0
Fixed version1.20.0
Description

Before Go 1.20, the RSA based TLS key exchanges used the math/big library, which is not constant time. RSA blinding was applied to prevent timing attacks, but analysis shows this may not have been fully effective. In particular it appears as if the removal of PKCS#1 padding may leak timing information, which in turn could be used to recover session key bits.

In Go 1.20, the crypto/tls library switched to a fully constant time RSA implementation, which we do not believe exhibits any timing side channels.

high : CVE--2023--39325

Affected range<1.20.10
Fixed version1.20.10
Description

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.

With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.

This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.

The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

high : CVE--2023--24537

Affected range<1.19.8
Fixed version1.19.8
Description

Calling any of the Parse functions on Go source code which contains //line directives with very large line numbers can cause an infinite loop due to integer overflow.

high : CVE--2023--24536

Affected range<1.19.8
Fixed version1.19.8
Description

Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts.

This stems from several causes:

  1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended.
  2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts.
  3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector.

The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue.

With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations.

In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms:

  1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=.
  2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=.

high : CVE--2023--24534

Affected range<1.19.8
Fixed version1.19.8
Description

HTTP and MIME header parsing can allocate large amounts of memory, even when parsing small inputs, potentially leading to a denial of service.

Certain unusual patterns of input data can cause the common function used to parse HTTP and MIME headers to allocate substantially more memory than required to hold the parsed headers. An attacker can exploit this behavior to cause an HTTP server to allocate large amounts of memory from a small request, potentially leading to memory exhaustion and a denial of service.

With fix, header parsing now correctly allocates only the memory required to hold parsed headers.

high : CVE--2022--41725

Affected range<1.19.6
Fixed version1.19.6
Description

A denial of service is possible from excessive resource consumption in net/http and mime/multipart.

Multipart form parsing with mime/multipart.Reader.ReadForm can consume largely unlimited amounts of memory and disk files. This also affects form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue.

ReadForm takes a maxMemory parameter, and is documented as storing "up to maxMemory bytes +10MB (reserved for non-file parts) in memory". File parts which cannot be stored in memory are stored on disk in temporary files. The unconfigurable 10MB reserved for non-file parts is excessively large and can potentially open a denial of service vector on its own. However, ReadForm did not properly account for all memory consumed by a parsed form, such as map entry overhead, part names, and MIME headers, permitting a maliciously crafted form to consume well over 10MB. In addition, ReadForm contained no limit on the number of disk files created, permitting a relatively small request body to create a large number of disk temporary files.

With fix, ReadForm now properly accounts for various forms of memory overhead, and should now stay within its documented limit of 10MB + maxMemory bytes of memory consumption. Users should still be aware that this limit is high and may still be hazardous.

In addition, ReadForm now creates at most one on-disk temporary file, combining multiple form parts into a single temporary file. The mime/multipart.File interface type's documentation states, "If stored on disk, the File's underlying concrete type will be an *os.File.". This is no longer the case when a form contains more than one file part, due to this coalescing of parts into a single file. The previous behavior of using distinct files for each form part may be reenabled with the environment variable GODEBUG=multipartfiles=distinct.

Users should be aware that multipart.ReadForm and the http.Request methods that call it do not limit the amount of disk consumed by temporary files. Callers can limit the size of form data with http.MaxBytesReader.

high : CVE--2022--41724

Affected range<1.19.6
Fixed version1.19.6
Description

Large handshake records may cause panics in crypto/tls.

Both clients and servers may send large TLS handshake records which cause servers and clients, respectively, to panic when attempting to construct responses.

This affects all TLS 1.3 clients, TLS 1.2 clients which explicitly enable session resumption (by setting Config.ClientSessionCache to a non-nil value), and TLS 1.3 servers which request client certificates (by setting Config.ClientAuth >= RequestClientCert).

high : CVE--2022--41723

Affected range<1.19.6
Fixed version1.19.6
Description

A maliciously crafted HTTP/2 stream could cause excessive CPU consumption in the HPACK decoder, sufficient to cause a denial of service from a small number of small requests.

high : CVE--2022--41722

Affected range<1.19.6
Fixed version1.19.6
Description

A path traversal vulnerability exists in filepath.Clean on Windows.

On Windows, the filepath.Clean function could transform an invalid path such as "a/../c:/b" into the valid path "c:\b". This transformation of a relative (if invalid) path into an absolute path could enable a directory traversal attack.

After fix, the filepath.Clean function transforms this path into the relative (but still invalid) path ".\c:\b".

high : CVE--2022--41720

Affected range<1.18.9
Fixed version1.18.9
Description

On Windows, restricted files can be accessed via os.DirFS and http.Dir.

The os.DirFS function and http.Dir type provide access to a tree of files rooted at a given directory. These functions permit access to Windows device files under that root. For example, os.DirFS("C:/tmp").Open("COM1") opens the COM1 device. Both os.DirFS and http.Dir only provide read-only filesystem access.

In addition, on Windows, an os.DirFS for the directory (the root of the current drive) can permit a maliciously crafted path to escape from the drive and access any path on the system.

With fix applied, the behavior of os.DirFS("") has changed. Previously, an empty root was treated equivalently to "/", so os.DirFS("").Open("tmp") would open the path "/tmp". This now returns an error.

high : CVE--2022--41716

Affected range<1.18.8
Fixed version1.18.8
Description

Due to unsanitized NUL values, attackers may be able to maliciously set environment variables on Windows.

In syscall.StartProcess and os/exec.Cmd, invalid environment variable values containing NUL values are not properly checked for. A malicious environment variable value can exploit this behavior to set a value for a different environment variable. For example, the environment variable string "A=B\x00C=D" sets the variables "A=B" and "C=D".

high : CVE--2022--41715

Affected range<1.18.7
Fixed version1.18.7
Description

Programs which compile regular expressions from untrusted sources may be vulnerable to memory exhaustion or denial of service.

The parsed regexp representation is linear in the size of the input, but in some cases the constant factor can be as high as 40,000, making relatively small regexps consume much larger amounts of memory.

After fix, each regexp being parsed is limited to a 256 MB memory footprint. Regular expressions whose representation would use more space than that are rejected. Normal use of regular expressions is unaffected.

high : CVE--2022--32189

Affected range<1.17.13
Fixed version1.17.13
Description

Decoding big.Float and big.Rat types can panic if the encoded message is too short, potentially allowing a denial of service.

high : CVE--2022--30635

Affected range<1.17.12
Fixed version1.17.12
Description

Calling Decoder.Decode on a message which contains deeply nested structures can cause a panic due to stack exhaustion.

high : CVE--2022--30634

Affected range<1.17.11
Fixed version1.17.11
Description

On Windows, rand.Read will hang indefinitely if passed a buffer larger than 1 << 32 - 1 bytes.

high : CVE--2022--30633

Affected range<1.17.12
Fixed version1.17.12
Description

Unmarshaling an XML document into a Go struct which has a nested field that uses the 'any' field tag can panic due to stack exhaustion.

high : CVE--2022--30632

Affected range<1.17.12
Fixed version1.17.12
Description

Calling Glob on a path which contains a large number of path separators can cause a panic due to stack exhaustion.

high : CVE--2022--30631

Affected range<1.17.12
Fixed version1.17.12
Description

Calling Reader.Read on an archive containing a large number of concatenated 0-length compressed files can cause a panic due to stack exhaustion.

high : CVE--2022--30630

Affected range<1.17.12
Fixed version1.17.12
Description

Calling Glob on a path which contains a large number of path separators can cause a panic due to stack exhaustion.

high : CVE--2022--29804

Affected range<1.17.11
Fixed version1.17.11
Description

On Windows, the filepath.Clean function can convert certain invalid paths to valid, absolute paths, potentially allowing a directory traversal attack.

For example, Clean(".\c:") returns "c:".

high : CVE--2022--2880

Affected range<1.18.7
Fixed version1.18.7
Description

Requests forwarded by ReverseProxy include the raw query parameters from the inbound request, including unparsable parameters rejected by net/http. This could permit query parameter smuggling when a Go proxy forwards a parameter with an unparsable value.

After fix, ReverseProxy sanitizes the query parameters in the forwarded query when the outbound request's Form field is set after the ReverseProxy. Director function returns, indicating that the proxy has parsed the query parameters. Proxies which do not parse query parameters continue to forward the original query parameters unchanged.

high : CVE--2022--2879

Affected range<1.18.7
Fixed version1.18.7
Description

Reader.Read does not set a limit on the maximum size of file headers. A maliciously crafted archive could cause Read to allocate unbounded amounts of memory, potentially causing resource exhaustion or panics. After fix, Reader.Read limits the maximum size of header blocks to 1 MiB.

high : CVE--2022--28327

Affected range<1.17.9
Fixed version1.17.9
Description

A crafted scalar input longer than 32 bytes can cause P256().ScalarMult or P256().ScalarBaseMult to panic. Indirect uses through crypto/ecdsa and crypto/tls are unaffected. amd64, arm64, ppc64le, and s390x are unaffected.

high : CVE--2022--28131

Affected range<1.17.12
Fixed version1.17.12
Description

Calling Decoder.Skip when parsing a deeply nested XML document can cause a panic due to stack exhaustion.

high : CVE--2022--27664

Affected range<1.18.6
Fixed version1.18.6
Description

HTTP/2 server connections can hang forever waiting for a clean shutdown that was preempted by a fatal error. This condition can be exploited by a malicious client to cause a denial of service.

high : CVE--2022--24921

Affected range>=1.17.0-0
<1.17.8
Fixed version1.17.8
Description

On 64-bit platforms, an extremely deeply nested expression can cause regexp.Compile to cause goroutine stack exhaustion, forcing the program to exit. Note this applies to very large expressions, on the order of 2MB.

high : CVE--2022--24675

Affected range<1.17.9
Fixed version1.17.9
Description

encoding/pem in Go before 1.17.9 and 1.18.x before 1.18.1 has a Decode stack overflow via a large amount of PEM data.

high : CVE--2022--23772

Affected range>=1.17.0-0
<1.17.7
Fixed version1.17.7
Description

Rat.SetString had an overflow issue that can lead to uncontrolled memory consumption.

high : CVE--2023--29400

Affected range<1.19.9
Fixed version1.19.9
Description

Templates containing actions in unquoted HTML attributes (e.g. "attr={{.}}") executed with empty input can result in output with unexpected results when parsed due to HTML normalization rules. This may allow injection of arbitrary attributes into tags.

high : CVE--2023--24539

Affected range<1.19.9
Fixed version1.19.9
Description

Angle brackets (<>) are not considered dangerous characters when inserted into CSS contexts. Templates containing multiple actions separated by a '/' character can result in unexpectedly closing the CSS context and allowing for injection of unexpected HTML, if executed with untrusted input.

medium : CVE--2023--29406

Affected range<1.19.11
Fixed version1.19.11
Description

The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests.

With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value.

medium : CVE--2022--32148

Affected range<1.17.12
Fixed version1.17.12
Description

Client IP adresses may be unintentionally exposed via X-Forwarded-For headers.

When httputil.ReverseProxy.ServeHTTP is called with a Request.Header map containing a nil value for the X-Forwarded-For header, ReverseProxy sets the client IP as the value of the X-Forwarded-For header, contrary to its documentation.

In the more usual case where a Director function sets the X-Forwarded-For header value to nil, ReverseProxy leaves the header unmodified as expected.

medium : CVE--2022--1705

Affected range<1.17.12
Fixed version1.17.12
Description

The HTTP/1 client accepted some invalid Transfer-Encoding headers as indicating a "chunked" encoding. This could potentially allow for request smuggling, but only if combined with an intermediate server that also improperly failed to reject the header as invalid.

medium : CVE--2023--39319

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not apply the proper rules for handling occurrences of "<script", "<!--", and "</script" within JS literals in <script> contexts. This may cause the template parser to improperly consider script contexts to be terminated early, causing actions to be improperly escaped. This could be leveraged to perform an XSS attack.

medium : CVE--2023--39318

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not properly handle HTML-like "" comment tokens, nor hashbang "#!" comment tokens, in <script> contexts. This may cause the template parser to improperly interpret the contents of <script> contexts, causing actions to be improperly escaped. This may be leveraged to perform an XSS attack.

medium : CVE--2022--1962

Affected range<1.17.12
Fixed version1.17.12
Description

Calling any of the Parse functions on Go source code which contains deeply nested types or declarations can cause a panic due to stack exhaustion.

medium : CVE--2023--45284

Affected range<1.20.11
Fixed version1.20.11
Description

On Windows, The IsLocal function does not correctly detect reserved device names in some cases.

Reserved names followed by spaces, such as "COM1 ", and reserved names "COM" and "LPT" followed by superscript 1, 2, or 3, are incorrectly reported as local.

With fix, IsLocal now correctly reports these names as non-local.

medium : CVE--2023--39326

Affected range<1.20.12
Fixed version1.20.12
Description

A malicious HTTP sender can use chunk extensions to cause a receiver reading from a request or response body to read many more bytes from the network than are in the body.

A malicious HTTP client can further exploit this to cause a server to automatically read a large amount of data (up to about 1GiB) when a handler fails to read the entire body of a request.

Chunk extensions are a little-used HTTP feature which permit including additional metadata in a request or response body sent using the chunked encoding. The net/http chunked encoding reader discards this metadata. A sender can exploit this by inserting a large metadata segment with each byte transferred. The chunk reader now produces an error if the ratio of real body to encoded bytes grows too small.

medium : CVE--2023--29409

Affected range<1.19.12
Fixed version1.19.12
Description

Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures.

With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits.

Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable.

medium : CVE--2023--24532

Affected range<1.19.7
Fixed version1.19.7
Description

The ScalarMult and ScalarBaseMult methods of the P256 Curve may return an incorrect result if called with some specific unreduced scalars (a scalar larger than the order of the curve).

This does not impact usages of crypto/ecdsa or crypto/ecdh.

medium : CVE--2022--41717

Affected range<1.18.9
Fixed version1.18.9
Description

An attacker can cause excessive memory growth in a Go server accepting HTTP/2 requests.

HTTP/2 server connections contain a cache of HTTP header keys sent by the client. While the total number of entries in this cache is capped, an attacker sending very large keys can cause the server to allocate approximately 64 MiB per open connection.

medium : CVE--2022--29526

Affected range<1.17.10
Fixed version1.17.10
Description

When called with a non-zero flags parameter, the Faccessat function can incorrectly report that a file is accessible.

low : CVE--2022--30629

Affected range<1.17.11
Fixed version1.17.11
Description

An attacker can correlate a resumed TLS session with a previous connection.

Session tickets generated by crypto/tls do not contain a randomly generated ticket_age_add, which allows an attacker that can observe TLS handshakes to correlate successive connections by comparing ticket ages during session resumption.

critical: 0 high: 2 medium: 0 low: 0 golang.org/x/text 0.3.6 (golang)

pkg:golang/golang.org/x/text@0.3.6

high 7.5: CVE--2022--32149 Missing Release of Resource after Effective Lifetime

Affected range<0.3.8
Fixed version0.3.8
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

The BCP 47 tag parser has quadratic time complexity due to inherent aspects of its design. Since the parser is, by design, exposed to untrusted user input, this can be leveraged to force a program to consume significant time parsing Accept-Language headers. The parser cannot be easily rewritten to fix this behavior for various reasons. Instead the solution implemented in this CL is to limit the total complexity of tags passed into ParseAcceptLanguage by limiting the number of dashes in the string to 1000. This should be more than enough for the majority of real world use cases, where the number of tags being sent is likely to be in the single digits.

Specific Go Packages Affected

golang.org/x/text/language

high 7.5: CVE--2021--38561 Out-of-bounds Read

Affected range<0.3.7
Fixed version0.3.7
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

golang.org/x/text/language in golang.org/x/text before 0.3.7 can panic with an out-of-bounds read during BCP 47 language tag parsing. Index calculation is mishandled. If parsing untrusted user input, this can be used as a vector for a denial-of-service attack.

critical: 0 high: 2 medium: 0 low: 0 golang.org/x/net 0.0.0-20211112202133-69e39bad7dc2 (golang)

pkg:golang/golang.org/x/net@0.0.0-20211112202133-69e39bad7dc2

high 7.5: CVE--2022--27664

Affected range<0.0.0-20220906165146-f3363e06e74c
Fixed version0.0.0-20220906165146-f3363e06e74c
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

In net/http in Go before 1.18.6 and 1.19.x before 1.19.1, attackers can cause a denial of service because an HTTP/2 connection can hang during closing if shutdown were preempted by a fatal error.

high : CVE--2021--44716

Affected range<0.0.0-20211209124913-491a49abca63
Fixed version0.0.0-20211209124913-491a49abca63
Description

An attacker can cause unbounded memory growth in servers accepting HTTP/2 requests.

critical: 0 high: 1 medium: 5 low: 0 github.com/containerd/containerd 1.5.9 (golang)

pkg:golang/github.com/containerd/containerd@1.5.9

high 7.5: CVE--2022--23648 Exposure of Sensitive Information to an Unauthorized Actor

Affected range>=1.5.0
<1.5.10
Fixed version1.5.10
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
Description

Impact

A bug was found in containerd where containers launched through containerd’s CRI implementation with a specially-crafted image configuration could gain access to read-only copies of arbitrary files and directories on the host. This may bypass any policy-based enforcement on container setup (including a Kubernetes Pod Security Policy) and expose potentially sensitive information. Kubernetes and crictl can both be configured to use containerd’s CRI implementation.

Patches

This bug has been fixed in containerd 1.6.1, 1.5.10 and 1.4.13. Users should update to these versions to resolve the issue.

Workarounds

Ensure that only trusted images are used.

Credits

The containerd project would like to thank Felix Wilhelm of Google Project Zero for responsibly disclosing this issue in accordance with the containerd security policy.

For more information

If you have any questions or comments about this advisory:

medium 5.7: CVE--2022--23471 Uncontrolled Resource Consumption

Affected range<1.5.16
Fixed version1.5.16
CVSS Score5.7
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:N/I:N/A:H
Description

Impact

A bug was found in containerd's CRI implementation where a user can exhaust memory on the host. In the CRI stream server, a goroutine is launched to handle terminal resize events if a TTY is requested. If the user's process fails to launch due to, for example, a faulty command, the goroutine will be stuck waiting to send without a receiver, resulting in a memory leak. Kubernetes and crictl can both be configured to use containerd's CRI implementation and the stream server is used for handling container IO.

Patches

This bug has been fixed in containerd 1.6.12 and 1.5.16. Users should update to these versions to resolve the issue.

Workarounds

Ensure that only trusted images and commands are used and that only trusted users have permissions to execute commands in running containers.

For more information

If you have any questions or comments about this advisory:

To report a security issue in containerd:

medium 5.5: CVE--2023--25153 Uncontrolled Resource Consumption

Affected range<1.5.18
Fixed version1.5.18
CVSS Score5.5
CVSS VectorCVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H
Description

Impact

When importing an OCI image, there was no limit on the number of bytes read for certain files. A maliciously crafted image with a large file where a limit was not applied could cause a denial of service.

Patches

This bug has been fixed in containerd 1.6.18 and 1.5.18. Users should update to these versions to resolve the issue.

Workarounds

Ensure that only trusted images are used and that only trusted users have permissions to import images.

Credits

The containerd project would like to thank David Korczynski and Adam Korczynski of ADA Logics for responsibly disclosing this issue in accordance with the containerd security policy during a security fuzzing audit sponsored by CNCF.

For more information

If you have any questions or comments about this advisory:

To report a security issue in containerd:

medium 5.5: CVE--2022--31030 Uncontrolled Resource Consumption

Affected range<1.5.13
Fixed version1.5.13
CVSS Score5.5
CVSS VectorCVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
Description

Impact

A bug was found in containerd's CRI implementation where programs inside a container can cause the containerd daemon to consume memory without bound during invocation of the ExecSync API. This can cause containerd to consume all available memory on the computer, denying service to other legitimate workloads. Kubernetes and crictl can both be configured to use containerd's CRI implementation; ExecSync may be used when running probes or when executing processes via an "exec" facility.

Patches

This bug has been fixed in containerd 1.6.6 and 1.5.13. Users should update to these versions to resolve the issue.

Workarounds

Ensure that only trusted images and commands are used.

References

Credits

The containerd project would like to thank David Korczynski and Adam Korczynski of ADA Logics for responsibly disclosing this issue in accordance with the containerd security policy during a security audit sponsored by CNCF and facilitated by OSTIF.

For more information

If you have any questions or comments about this advisory:

medium 5.3: CVE--2023--25173 Improper Privilege Management

Affected range<1.5.18
Fixed version1.5.18
CVSS Score5.3
CVSS VectorCVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L
Description

Impact

A bug was found in containerd where supplementary groups are not set up properly inside a container. If an attacker has direct access to a container and manipulates their supplementary group access, they may be able to use supplementary group access to bypass primary group restrictions in some cases, potentially gaining access to sensitive information or gaining the ability to execute code in that container.

Downstream applications that use the containerd client library may be affected as well.

Patches

This bug has been fixed in containerd v1.6.18 and v.1.5.18. Users should update to these versions and recreate containers to resolve this issue. Users who rely on a downstream application that uses containerd's client library should check that application for a separate advisory and instructions.

Workarounds

Ensure that the "USER $USERNAME" Dockerfile instruction is not used. Instead, set the container entrypoint to a value similar to ENTRYPOINT ["su", "-", "user"] to allow su to properly set up supplementary groups.

References

Note that CVE IDs apply to a particular implementation, even if an issue is common.

For more information

If you have any questions or comments about this advisory:

To report a security issue in containerd:

medium : GHSA--7ww5--4wqc--m92c

Affected range<=1.6.25
Fixed version1.6.26
Description

/sys/devices/virtual/powercap accessible by default to containers

Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via sysfs. As RAPL is an interface to access a hardware feature, it is only available when running on bare metal with the module compiled into the kernel.

By 2019, it was realized that in some cases unprivileged access to RAPL readings could be exploited as a power-based side-channel against security features including AES-NI (potentially inside a SGX enclave) and KASLR (kernel address space layout randomization). Also known as the PLATYPUS attack, Intel assigned CVE-2020-8694 and CVE-2020-8695, and AMD assigned CVE-2020-12912.

Several mitigations were applied; Intel reduced the sampling resolution via a microcode update, and the Linux kernel prevents access by non-root users since 5.10. However, this kernel-based mitigation does not apply to many container-based scenarios:

  • Unless using user namespaces, root inside a container has the same level of privilege as root outside the container, but with a slightly more narrow view of the system
  • sysfs is mounted inside containers read-only; however only read access is needed to carry out this attack on an unpatched CPU

While this is not a direct vulnerability in container runtimes, defense in depth and safe defaults are valuable and preferred, especially as this poses a risk to multi-tenant container environments. This is provided by masking /sys/devices/virtual/powercap in the default mount configuration, and adding an additional set of rules to deny it in the default AppArmor profile.

While sysfs is not the only way to read from the RAPL subsystem, other ways of accessing it require additional capabilities such as CAP_SYS_RAWIO which is not available to containers by default, or perf paranoia level less than 1, which is a non-default kernel tunable.

References

critical: 0 high: 1 medium: 3 low: 0 unspecified: 1github.com/docker/docker 20.10.11+incompatible (golang)

pkg:golang/github.com/docker/docker@20.10.11+incompatible

high 7.5: CVE--2023--28840 Unprotected Alternate Channel

Affected range>=1.12.0
<20.10.24
Fixed version20.10.24
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:L
Description

Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (dockerd), which is developed as moby/moby is commonly referred to as Docker.

Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.

The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.

Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.

When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.

Two iptables rules serve to filter incoming VXLAN datagrams with a VNI that corresponds to an encrypted network and discards unencrypted datagrams. The rules are appended to the end of the INPUT filter chain, following any rules that have been previously set by the system administrator. Administrator-set rules take precedence over the rules Moby sets to discard unencrypted VXLAN datagrams, which can potentially admit unencrypted datagrams that should have been discarded.

On Red Hat Enterprise Linux and derivatives such as CentOS and Rocky, the xt_u32 module has been:

These rules are not created when xt_u32 is unavailable, even though the container is still attached to the network.

Impact

Encrypted overlay networks on affected configurations silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams.

The injection of arbitrary Ethernet frames can enable a Denial of Service attack. A sophisticated attacker may be able to establish a UDP or TCP connection by way of the container’s outbound gateway that would otherwise be blocked by a stateful firewall, or carry out other escalations beyond simple injection by smuggling packets into the overlay network.

Patches

Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.

Workarounds

  • Close the VXLAN port (by default, UDP port 4789) to incoming traffic at the Internet boundary (see GHSA-vwm3-crmr-xfxw) to prevent all VXLAN packet injection.
  • Ensure that the xt_u32 kernel module is available on all nodes of the Swarm cluster.

Background

  • #43382 partially discussed this concern, but did not consider the security implications.
  • Mirantis FIELD-5788 essentially duplicates #43382, and was created six months earlier; it similarly overlooked the security implications.
  • #45118 is the ancestor of the final patches, and was where the security implications were discovered.

Related

medium 6.8: CVE--2023--28842 Unprotected Alternate Channel

Affected range>=1.12.0
<20.10.24
Fixed version20.10.24
CVSS Score6.8
CVSS VectorCVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:N
Description

Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (dockerd), which is developed as moby/moby is commonly referred to as Docker.

Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.

The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.

Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.

When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.

The overlay driver dynamically and lazily defines the kernel configuration for the VXLAN network on each node as containers are attached and detached. Routes and encryption parameters are only defined for destination nodes that participate in the network. The iptables rules that prevent encrypted overlay networks from accepting unencrypted packets are not created until a peer is available with which to communicate.

Impact

Encrypted overlay networks silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams. The implications of this can be quite dire, and GHSA-vwm3-crmr-xfxw should be referenced for a deeper exploration.

Patches

Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.

Workarounds

  • In multi-node clusters, deploy a global ‘pause’ container for each encrypted overlay network, on every node. For example, use the registry.k8s.io/pause image and a --mode global service.
  • For a single-node cluster, do not use overlay networks of any sort. Bridge networks provide the same connectivity on a single node and have no multi-node features.
    The Swarm ingress feature is implemented using an overlay network, but can be disabled by publishing ports in host mode instead of ingress mode (allowing the use of an external load balancer), and removing the ingress network.
  • If encrypted overlay networks are in exclusive use, block UDP port 4789 from traffic that has not been validated by IPSec. For example, iptables -A INPUT -m udp —-dport 4789 -m policy --dir in --pol none -j DROP.

Background

Related

medium 6.8: CVE--2023--28841 Missing Encryption of Sensitive Data

Affected range>=1.12.0
<20.10.24
Fixed version20.10.24
CVSS Score6.8
CVSS VectorCVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N
Description

Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (dockerd), which is developed as moby/moby is commonly referred to as Docker.

Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.

The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.

Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.

When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.

An iptables rule designates outgoing VXLAN datagrams with a VNI that corresponds to an encrypted overlay network for IPsec encapsulation.

On Red Hat Enterprise Linux and derivatives such as CentOS and Rocky, the xt_u32 module has been:

This rule is not created when xt_u32 is unavailable, even though the container is still attached to the network.

Impact

Encrypted overlay networks on affected platforms silently transmit unencrypted data. As a result, overlay networks may appear to be functional, passing traffic as expected, but without any of the expected confidentiality or data integrity guarantees.

It is possible for an attacker sitting in a trusted position on the network to read all of the application traffic that is moving across the overlay network, resulting in unexpected secrets or user data disclosure. Thus, because many database protocols, internal APIs, etc. are not protected by a second layer of encryption, a user may rely on Swarm encrypted overlay networks to provide confidentiality, which due to this vulnerability is no longer guaranteed.

Patches

Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.

Workarounds

  • Close the VXLAN port (by default, UDP port 4789) to outgoing traffic at the Internet boundary (see GHSA-vwm3-crmr-xfxw) in order to prevent unintentionally leaking unencrypted traffic over the Internet.
  • Ensure that the xt_u32 kernel module is available on all nodes of the Swarm cluster.

Background

  • #43382 partially discussed this concern, but did not consider the security implications.
  • Mirantis FIELD-5788 essentially duplicates #43382, and was created six months earlier; it similarly overlooked the security implications.
  • #45118 is the ancestor of the final patches, and was where the security implications were discovered.

Related

medium : GHSA--jq35--85cj--fj4p

Affected range<24.0.7
Fixed version24.0.7
Description

Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via sysfs. As RAPL is an interface to access a hardware feature, it is only available when running on bare metal with the module compiled into the kernel.

By 2019, it was realized that in some cases unprivileged access to RAPL readings could be exploited as a power-based side-channel against security features including AES-NI (potentially inside a SGX enclave) and KASLR (kernel address space layout randomization). Also known as the PLATYPUS attack, Intel assigned CVE-2020-8694 and CVE-2020-8695, and AMD assigned CVE-2020-12912.

Several mitigations were applied; Intel reduced the sampling resolution via a microcode update, and the Linux kernel prevents access by non-root users since 5.10. However, this kernel-based mitigation does not apply to many container-based scenarios:

  • Unless using user namespaces, root inside a container has the same level of privilege as root outside the container, but with a slightly more narrow view of the system
  • sysfs is mounted inside containers read-only; however only read access is needed to carry out this attack on an unpatched CPU

While this is not a direct vulnerability in container runtimes, defense in depth and safe defaults are valuable and preferred, especially as this poses a risk to multi-tenant container environments running directly on affected hardware. This is provided by masking /sys/devices/virtual/powercap in the default mount configuration, and adding an additional set of rules to deny it in the default AppArmor profile.

While sysfs is not the only way to read from the RAPL subsystem, other ways of accessing it require additional capabilities such as CAP_SYS_RAWIO which is not available to containers by default, or perf paranoia level less than 1, which is a non-default kernel tunable.

References

unspecified : GMS--2023--3981 OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

Affected range<24.0.7
Fixed versionv24.0.7
Description

Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via sysfs.

critical: 0 high: 1 medium: 1 low: 0 unspecified: 1google.golang.org/grpc 1.38.0 (golang)

pkg:golang/google.golang.org/grpc@1.38.0

high 7.5: GHSA--m425--mq94--257g

Affected range<1.56.3
Fixed version1.56.3
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

Impact

In affected releases of gRPC-Go, it is possible for an attacker to send HTTP/2 requests, cancel them, and send subsequent requests, which is valid by the HTTP/2 protocol, but would cause the gRPC-Go server to launch more concurrent method handlers than the configured maximum stream limit.

Patches

This vulnerability was addressed by #6703 and has been included in patch releases: 1.56.3, 1.57.1, 1.58.3. It is also included in the latest release, 1.59.0.

Along with applying the patch, users should also ensure they are using the grpc.MaxConcurrentStreams server option to apply a limit to the server's resources used for any single connection.

Workarounds

None.

References

#6703

medium 5.3: CVE--2023--44487 Uncontrolled Resource Consumption

Affected range<1.56.3
Fixed version1.56.3
CVSS Score5.3
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L
Description

swift-nio-http2 is vulnerable to a denial-of-service vulnerability in which a malicious client can create and then reset a large number of HTTP/2 streams in a short period of time. This causes swift-nio-http2 to commit to a large amount of expensive work which it then throws away, including creating entirely new Channels to serve the traffic. This can easily overwhelm an EventLoop and prevent it from making forward progress.

swift-nio-http2 1.28 contains a remediation for this issue that applies reset counter using a sliding window. This constrains the number of stream resets that may occur in a given window of time. Clients violating this limit will have their connections torn down. This allows clients to continue to cancel streams for legitimate reasons, while constraining malicious actors.

unspecified : GMS--2023--3788 OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

Affected range<1.56.3
Fixed version1.56.3, 1.57.1, 1.58.3
Description

Impact

In affected releases of gRPC-Go, it is possible for an attacker to send HTTP/2 requests, cancel them, and send subsequent requests, which is valid by the HTTP/2 protocol, but would cause the gRPC-Go server to launch more concurrent method handlers than the configured maximum stream limit.

Patches

This vulnerability was addressed by #6703 and has been included in patch releases: 1.56.3, 1.57.1, 1.58.3. It is also included in the latest release, 1.59.0.

Along with applying the patch, users should also ensure they are using the grpc.MaxConcurrentStreams server option to apply a limit to the server's resources used for any single connection.

Workarounds

None.

References

#6703

critical: 0 high: 1 medium: 0 low: 1 unspecified: 1github.com/docker/distribution 2.7.1+incompatible (golang)

pkg:golang/github.com/docker/distribution@2.7.1+incompatible

high 7.5: CVE--2023--2253 Undefined Behavior for Input to API

Affected range<2.8.2-beta.1
Fixed version2.8.2-beta.1
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

Impact

Systems that run distribution built after a specific commit running on memory-restricted environments can suffer from denial of service by a crafted malicious /v2/_catalog API endpoint request.

Patches

Upgrade to at least 2.8.2-beta.1 if you are running v2.8.x release. If you use the code from the main branch, update at least to the commit after f55a6552b006a381d9167e328808565dd2bf77dc.

Workarounds

There is no way to work around this issue without patching. Restrict access to the affected API endpoint: see the recommendations section.

References

/v2/_catalog endpoint accepts a parameter to control the maximum amount of records returned (query string: n).

When not given the default n=100 is used. The server trusts that n has an acceptable value, however when using a
maliciously large value, it allocates an array/slice of n of strings before filling the slice with data.

This behaviour was introduced ~7yrs ago [1].

Recommendation

The /v2/_catalog endpoint was designed specifically to do registry syncs with search or other API systems. Such an endpoint would create a lot of load on the backend system, due to overfetch required to serve a request in certain implementations.

Because of this, we strongly recommend keeping this API endpoint behind heightened privilege and avoiding leaving it exposed to the internet.

For more information

If you have any questions or comments about this advisory:

[1] faulty commit

low 3.0: GHSA--qq97--vm5h--rrhg Access of Resource Using Incompatible Type ('Type Confusion')

Affected range<2.8.0
Fixed version2.8.0
CVSS Score3
CVSS VectorCVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:C/C:N/I:L/A:N
Description

Impact

Systems that rely on digest equivalence for image attestations may be vulnerable to type confusion.

Patches

Upgrade to at least v2.8.0-beta.1 if you are running v2.x release. If you use the code from the main branch, update at least to the commit after b59a6f827947f9e0e67df0cfb571046de4733586.

Workarounds

There is no way to work around this issue without patching.

References

Due to an oversight in the OCI Image Specification that removed the embedded mediaType field from manifests, a maliciously crafted OCI Container Image can cause registry clients to parse the same image in two different ways without modifying the image’s digest by modifying the Content-Type header returned by a registry. This can invalidate a common pattern of relying on container image digests for equivalence.

For more information

If you have any questions or comments about this advisory:

unspecified : GMS--2022--20 OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

Affected range
Fixed versionv2.8.0
Description

Impact

Systems that rely on digest equivalence for image attestations may be vulnerable to type confusion.

critical: 0 high: 1 medium: 0 low: 0 github.com/prometheus/client_golang 1.11.0 (golang)

pkg:golang/github.com/prometheus/client_golang@1.11.0

high 7.5: CVE--2022--21698 Uncontrolled Resource Consumption

Affected range<1.11.1
Fixed version1.11.1
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

This is the Go client library for Prometheus. It has two separate parts, one for instrumenting application code, and one for creating clients that talk to the Prometheus HTTP API. client_golang is the instrumentation library for Go applications in Prometheus, and the promhttp package in client_golang provides tooling around HTTP servers and clients.

Impact

HTTP server susceptible to a Denial of Service through unbounded cardinality, and potential memory exhaustion, when handling requests with non-standard HTTP methods.

Affected Configuration

In order to be affected, an instrumented software must

  • Use any of promhttp.InstrumentHandler* middleware except RequestsInFlight.
  • Do not filter any specific methods (e.g GET) before middleware.
  • Pass metric with method label name to our middleware.
  • Not have any firewall/LB/proxy that filters away requests with unknown method.

Patches

Workarounds

If you cannot upgrade to v1.11.1 or above, in order to stop being affected you can:

  • Remove method label name from counter/gauge you use in the InstrumentHandler.
  • Turn off affected promhttp handlers.
  • Add custom middleware before promhttp handler that will sanitize the request method given by Go http.Request.
  • Use a reverse proxy or web application firewall, configured to only allow a limited set of methods.

For more information

If you have any questions or comments about this advisory:

critical: 0 high: 0 medium: 1 low: 0 golang.org/x/sys 0.0.0-20211013075003-97ac67df715c (golang)

pkg:golang/golang.org/x/sys@0.0.0-20211013075003-97ac67df715c

medium 5.3: CVE--2022--29526 Improper Privilege Management

Affected range<0.0.0-20220412211240-33da011f77ad
Fixed version0.0.0-20220412211240-33da011f77ad
CVSS Score5.3
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
Description

Go before 1.17.10 and 1.18.x before 1.18.2 has Incorrect Privilege Reporting in syscall. When called with a non-zero flags parameter, the Faccessat function could incorrectly report that a file is accessible.

Specific Go Packages Affected

golang.org/x/sys/unix

Copy link

🔍 Vulnerabilities of ghcr.io/uniget-org/tools/bif:0.0.11

📦 Image Reference ghcr.io/uniget-org/tools/bif:0.0.11
digestsha256:290d67bc1daa46cdc54d829d4789b9f5dfd0f5aa2579baf759e910830fd1e5c0
vulnerabilitiescritical: 0 high: 2 medium: 6 low: 0
platformlinux/amd64
size4.1 MB
packages42
critical: 0 high: 2 medium: 6 low: 0 stdlib 1.20.4 (golang)

pkg:golang/stdlib@1.20.4

high : CVE--2023--29403

Affected range>=1.20.0-0
<1.20.5
Fixed version1.20.5
Description

On Unix platforms, the Go runtime does not behave differently when a binary is run with the setuid/setgid bits. This can be dangerous in certain cases, such as when dumping memory state, or assuming the status of standard i/o file descriptors.

If a setuid/setgid binary is executed with standard I/O file descriptors closed, opening any files can result in unexpected content being read or written with elevated privileges. Similarly, if a setuid/setgid program is terminated, either via panic or signal, it may leak the contents of its registers.

high : CVE--2023--39325

Affected range<1.20.10
Fixed version1.20.10
Description

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.

With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.

This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.

The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

medium : CVE--2023--29406

Affected range>=1.20.0-0
<1.20.6
Fixed version1.20.6
Description

The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests.

With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value.

medium : CVE--2023--39319

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not apply the proper rules for handling occurrences of "<script", "<!--", and "</script" within JS literals in <script> contexts. This may cause the template parser to improperly consider script contexts to be terminated early, causing actions to be improperly escaped. This could be leveraged to perform an XSS attack.

medium : CVE--2023--39318

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not properly handle HTML-like "" comment tokens, nor hashbang "#!" comment tokens, in <script> contexts. This may cause the template parser to improperly interpret the contents of <script> contexts, causing actions to be improperly escaped. This may be leveraged to perform an XSS attack.

medium : CVE--2023--45284

Affected range<1.20.11
Fixed version1.20.11
Description

On Windows, The IsLocal function does not correctly detect reserved device names in some cases.

Reserved names followed by spaces, such as "COM1 ", and reserved names "COM" and "LPT" followed by superscript 1, 2, or 3, are incorrectly reported as local.

With fix, IsLocal now correctly reports these names as non-local.

medium : CVE--2023--39326

Affected range<1.20.12
Fixed version1.20.12
Description

A malicious HTTP sender can use chunk extensions to cause a receiver reading from a request or response body to read many more bytes from the network than are in the body.

A malicious HTTP client can further exploit this to cause a server to automatically read a large amount of data (up to about 1GiB) when a handler fails to read the entire body of a request.

Chunk extensions are a little-used HTTP feature which permit including additional metadata in a request or response body sent using the chunked encoding. The net/http chunked encoding reader discards this metadata. A sender can exploit this by inserting a large metadata segment with each byte transferred. The chunk reader now produces an error if the ratio of real body to encoded bytes grows too small.

medium : CVE--2023--29409

Affected range>=1.20.0-0
<1.20.7
Fixed version1.20.7
Description

Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures.

With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits.

Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable.

Copy link

Attempting automerge. See https://github.com/uniget-org/tools/actions/runs/7287223810.

Copy link

PR is blocked and can not be merged. See https://github.com/uniget-org/tools/actions/runs/7287223810.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

None yet

1 participant